These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. iRSpot-Pse6NC: Identifying recombination spots in Yang H; Qiu WR; Liu G; Guo FB; Chen W; Chou KC; Lin H Int J Biol Sci; 2018; 14(8):883-891. PubMed ID: 29989083 [TBL] [Abstract][Full Text] [Related]
4. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Kabir M; Hayat M Mol Genet Genomics; 2016 Feb; 291(1):285-96. PubMed ID: 26319782 [TBL] [Abstract][Full Text] [Related]
5. iRSpot-EL: identify recombination spots with an ensemble learning approach. Liu B; Wang S; Long R; Chou KC Bioinformatics; 2017 Jan; 33(1):35-41. PubMed ID: 27531102 [TBL] [Abstract][Full Text] [Related]
6. iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components. Al Maruf MA; Shatabda S Genomics; 2019 Jul; 111(4):966-972. PubMed ID: 29935224 [TBL] [Abstract][Full Text] [Related]
7. A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae. Yang H; Yang W; Dao FY; Lv H; Ding H; Chen W; Lin H Brief Bioinform; 2020 Sep; 21(5):1568-1580. PubMed ID: 31633777 [TBL] [Abstract][Full Text] [Related]
8. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1). Xiao X; Hui MJ; Liu Z; Qiu WR J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845 [TBL] [Abstract][Full Text] [Related]
9. RF-DYMHC: detecting the yeast meiotic recombination hotspots and coldspots by random forest model using gapped dinucleotide composition features. Jiang P; Wu H; Wei J; Sang F; Sun X; Lu Z Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W47-51. PubMed ID: 17478517 [TBL] [Abstract][Full Text] [Related]
10. iRSpot-DACC: a computational predictor for recombination hot/cold spots identification based on dinucleotide-based auto-cross covariance. Liu B; Liu Y; Jin X; Wang X; Liu B Sci Rep; 2016 Sep; 6():33483. PubMed ID: 27641752 [TBL] [Abstract][Full Text] [Related]
11. iRSpot-DTS: Predict recombination spots by incorporating the dinucleotide-based spare-cross covariance information into Chou's pseudo components. Zhang S; Yang K; Lei Y; Song K Genomics; 2019 Dec; 111(6):1760-1770. PubMed ID: 30529702 [TBL] [Abstract][Full Text] [Related]
12. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Liu Z; Xiao X; Qiu WR; Chou KC Anal Biochem; 2015 Apr; 474():69-77. PubMed ID: 25596338 [TBL] [Abstract][Full Text] [Related]
13. iRSpot-PDI: Identification of recombination spots by incorporating dinucleotide property diversity information into Chou's pseudo components. Zhang L; Kong L Genomics; 2019 May; 111(3):457-464. PubMed ID: 29548799 [TBL] [Abstract][Full Text] [Related]
14. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou's pseudo components. Zhang L; Kong L J Theor Biol; 2018 Mar; 441():1-8. PubMed ID: 29305179 [TBL] [Abstract][Full Text] [Related]
15. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. Liu B; Xu J; Lan X; Xu R; Zhou J; Wang X; Chou KC PLoS One; 2014; 9(9):e106691. PubMed ID: 25184541 [TBL] [Abstract][Full Text] [Related]
16. Combining pseudo dinucleotide composition with the Z curve method to improve the accuracy of predicting DNA elements: a case study in recombination spots. Dong C; Yuan YZ; Zhang FZ; Hua HL; Ye YN; Labena AA; Lin H; Chen W; Guo FB Mol Biosyst; 2016 Aug; 12(9):2893-900. PubMed ID: 27410247 [TBL] [Abstract][Full Text] [Related]
17. Predicting secretory proteins of malaria parasite by incorporating sequence evolution information into pseudo amino acid composition via grey system model. Lin WZ; Fang JA; Xiao X; Chou KC PLoS One; 2012; 7(11):e49040. PubMed ID: 23189138 [TBL] [Abstract][Full Text] [Related]
18. Support vector machine for classification of meiotic recombination hotspots and coldspots in Saccharomyces cerevisiae based on codon composition. Zhou T; Weng J; Sun X; Lu Z BMC Bioinformatics; 2006 Apr; 7():223. PubMed ID: 16640774 [TBL] [Abstract][Full Text] [Related]