These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 24469313)
21. Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast. Wu M; Kwoh CK; Li X; Zheng J BMC Syst Biol; 2014 Sep; 8():107. PubMed ID: 25208583 [TBL] [Abstract][Full Text] [Related]
22. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. Xiao X; Min JL; Wang P; Chou KC J Theor Biol; 2013 Nov; 337():71-9. PubMed ID: 23988798 [TBL] [Abstract][Full Text] [Related]
23. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Chen W; Lei TY; Jin DC; Lin H; Chou KC Anal Biochem; 2014 Jul; 456():53-60. PubMed ID: 24732113 [TBL] [Abstract][Full Text] [Related]
24. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. Jia J; Li X; Qiu W; Xiao X; Chou KC J Theor Biol; 2019 Jan; 460():195-203. PubMed ID: 30312687 [TBL] [Abstract][Full Text] [Related]
25. Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach. Khan F; Khan M; Iqbal N; Khan S; Muhammad Khan D; Khan A; Wei DQ Front Genet; 2020; 11():539227. PubMed ID: 33093842 [TBL] [Abstract][Full Text] [Related]
26. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. Jia J; Liu Z; Xiao X; Liu B; Chou KC J Theor Biol; 2015 Jul; 377():47-56. PubMed ID: 25908206 [TBL] [Abstract][Full Text] [Related]
27. iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory. Qiu WR; Sun BQ; Xiao X; Xu D; Chou KC Mol Inform; 2017 May; 36(5-6):. PubMed ID: 28488814 [TBL] [Abstract][Full Text] [Related]
28. iRecSpot-EF: Effective sequence based features for recombination hotspot prediction. Jani MR; Khan Mozlish MT; Ahmed S; Tahniat NS; Farid DM; Shatabda S Comput Biol Med; 2018 Dec; 103():17-23. PubMed ID: 30336361 [TBL] [Abstract][Full Text] [Related]
29. iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. Qiu WR; Xiao X; Lin WZ; Chou KC J Biomol Struct Dyn; 2015; 33(8):1731-42. PubMed ID: 25248923 [TBL] [Abstract][Full Text] [Related]
30. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. Xu Y; Ding J; Wu LY; Chou KC PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062 [TBL] [Abstract][Full Text] [Related]
31. pLoc_bal-mVirus: Predict Subcellular Localization of Multi-Label Virus Proteins by Chou's General PseAAC and IHTS Treatment to Balance Training Dataset. Xiao X; Cheng X; Chen G; Mao Q; Chou KC Med Chem; 2019; 15(5):496-509. PubMed ID: 30556503 [TBL] [Abstract][Full Text] [Related]
32. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. Xiao X; Min JL; Wang P; Chou KC PLoS One; 2013; 8(8):e72234. PubMed ID: 24015221 [TBL] [Abstract][Full Text] [Related]
33. iNR-PhysChem: a sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix. Xiao X; Wang P; Chou KC PLoS One; 2012; 7(2):e30869. PubMed ID: 22363503 [TBL] [Abstract][Full Text] [Related]
34. Identification of immunoglobulins using Chou's pseudo amino acid composition with feature selection technique. Tang H; Chen W; Lin H Mol Biosyst; 2016 Apr; 12(4):1269-75. PubMed ID: 26883492 [TBL] [Abstract][Full Text] [Related]
35. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Cheng X; Xiao X; Chou KC Gene; 2017 Sep; 628():315-321. PubMed ID: 28728979 [TBL] [Abstract][Full Text] [Related]
36. iDNA-Prot: identification of DNA binding proteins using random forest with grey model. Lin WZ; Fang JA; Xiao X; Chou KC PLoS One; 2011; 6(9):e24756. PubMed ID: 21935457 [TBL] [Abstract][Full Text] [Related]
37. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. Liu B; Fang L; Liu F; Wang X; Chou KC J Biomol Struct Dyn; 2016; 34(1):223-35. PubMed ID: 25645238 [TBL] [Abstract][Full Text] [Related]
38. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. Jia J; Liu Z; Xiao X; Liu B; Chou KC J Theor Biol; 2016 Apr; 394():223-230. PubMed ID: 26807806 [TBL] [Abstract][Full Text] [Related]
39. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Jia J; Liu Z; Xiao X; Liu B; Chou KC Oncotarget; 2016 Jun; 7(23):34558-70. PubMed ID: 27153555 [TBL] [Abstract][Full Text] [Related]
40. Recombination Hotspot/Coldspot Identification Combining Three Different Pseudocomponents via an Ensemble Learning Approach. Liu B; Liu Y; Huang D Biomed Res Int; 2016; 2016():8527435. PubMed ID: 27648451 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]