These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 24469319)

  • 41. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification.
    Emken JL; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):33-9. PubMed ID: 15813404
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Applications of artificial intelligence in safe human-robot interactions.
    Najmaei N; Kermani MR
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):448-59. PubMed ID: 20699212
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Towards realization of multi-terrestrial locomotion: decentralized control of a sheet-like robot based on the scaffold-exploitation mechanism.
    Kano T; Watanabe Y; Ishiguro A
    Bioinspir Biomim; 2012 Dec; 7(4):046012. PubMed ID: 23093049
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fully decentralized control of a soft-bodied robot inspired by true slime mold.
    Umedachi T; Takeda K; Nakagaki T; Kobayashi R; Ishiguro A
    Biol Cybern; 2010 Mar; 102(3):261-9. PubMed ID: 20204398
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A neural learning classifier system with self-adaptive constructivism for mobile robot control.
    Hurst J; Bull L
    Artif Life; 2006; 12(3):353-80. PubMed ID: 16859445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Workspace trajectory generation with smooth gait transition using CPG-based locomotion control for hexapod robot.
    Helal K; Albadin A; Albitar C; Alsaba M
    Heliyon; 2024 Jun; 10(11):e31847. PubMed ID: 38882328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ANUBIS: artificial neuromodulation using a Bayesian inference system.
    Smith BJ; Saaj CM; Allouis E
    Neural Comput; 2013 Jan; 25(1):221-58. PubMed ID: 22970879
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.
    Spitz J; Evstrachin A; Zacksenhouse M
    Bioinspir Biomim; 2015 Aug; 10(5):056005. PubMed ID: 26291076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A bio-inspired robotic climbing robot to understand kinematic and morphological determinants for an optimal climbing gait.
    Beck HK; Schultz JT; Clemente CJ
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34740206
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biologically inspired adaptive walking of a quadruped robot.
    Kimura H; Fukuoka Y; Cohen AH
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):153-70. PubMed ID: 17148054
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.