These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 24469380)
21. A novel method for prediction of protein interaction sites based on integrated RBF neural networks. Chen Y; Xu J; Yang B; Zhao Y; He W Comput Biol Med; 2012 Apr; 42(4):402-7. PubMed ID: 22226645 [TBL] [Abstract][Full Text] [Related]
22. Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset. Shi MG; Xia JF; Li XL; Huang DS Amino Acids; 2010 Mar; 38(3):891-9. PubMed ID: 19387790 [TBL] [Abstract][Full Text] [Related]
23. Utilizing shared interacting domain patterns and Gene Ontology information to improve protein-protein interaction prediction. Roslan R; Othman RM; Shah ZA; Kasim S; Asmuni H; Taliba J; Hassan R; Zakaria Z Comput Biol Med; 2010 Jun; 40(6):555-64. PubMed ID: 20417930 [TBL] [Abstract][Full Text] [Related]
24. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Majid A; Ali S; Iqbal M; Kausar N Comput Methods Programs Biomed; 2014 Mar; 113(3):792-808. PubMed ID: 24472367 [TBL] [Abstract][Full Text] [Related]
25. PPIevo: protein-protein interaction prediction from PSSM based evolutionary information. Zahiri J; Yaghoubi O; Mohammad-Noori M; Ebrahimpour R; Masoudi-Nejad A Genomics; 2013 Oct; 102(4):237-42. PubMed ID: 23747746 [TBL] [Abstract][Full Text] [Related]
26. Mixture classification model based on clinical markers for breast cancer prognosis. Zeng T; Liu J Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686 [TBL] [Abstract][Full Text] [Related]
27. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms. Kurubanjerdjit N; Huang CH; Lee YL; Tsai JJ; Ng KL Comput Biol Med; 2013 Nov; 43(11):1645-52. PubMed ID: 24209909 [TBL] [Abstract][Full Text] [Related]
28. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. Xu Y; Wang XB; Ding J; Wu LY; Deng NY J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770 [TBL] [Abstract][Full Text] [Related]
29. An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins. Nanni L; Lumini A Amino Acids; 2009 Feb; 36(2):167-75. PubMed ID: 18288459 [TBL] [Abstract][Full Text] [Related]
30. Can simple codon pair usage predict protein-protein interaction? Zhou Y; Zhou YS; He F; Song J; Zhang Z Mol Biosyst; 2012 Apr; 8(5):1396-404. PubMed ID: 22392100 [TBL] [Abstract][Full Text] [Related]
31. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
32. GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble. Naveed M; Khan A Amino Acids; 2012 May; 42(5):1809-23. PubMed ID: 21505826 [TBL] [Abstract][Full Text] [Related]
33. MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates. Zhang SW; Liu YF; Yu Y; Zhang TH; Fan XN Anal Biochem; 2014 Mar; 449():164-71. PubMed ID: 24361712 [TBL] [Abstract][Full Text] [Related]
34. CE-PLoc: an ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition. Khan A; Majid A; Hayat M Comput Biol Chem; 2011 Aug; 35(4):218-29. PubMed ID: 21864791 [TBL] [Abstract][Full Text] [Related]
35. Identification of Protein-Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information. Ding Y; Tang J; Guo F Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27669239 [TBL] [Abstract][Full Text] [Related]
36. Feature-based classification of native and non-native protein-protein interactions: Comparing supervised and semi-supervised learning approaches. Zhao N; Pang B; Shyu CR; Korkin D Proteomics; 2011 Nov; 11(22):4321-30. PubMed ID: 22002942 [TBL] [Abstract][Full Text] [Related]
37. Using ensemble methods to deal with imbalanced data in predicting protein-protein interactions. Zhang Y; Zhang D; Mi G; Ma D; Li G; Guo Y; Li M; Zhu M Comput Biol Chem; 2012 Feb; 36():36-41. PubMed ID: 22286086 [TBL] [Abstract][Full Text] [Related]
38. Filtering high-throughput protein-protein interaction data using a combination of genomic features. Patil A; Nakamura H BMC Bioinformatics; 2005 Apr; 6():100. PubMed ID: 15833142 [TBL] [Abstract][Full Text] [Related]
39. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction. Stojanova D; Ceci M; Malerba D; Dzeroski S BMC Bioinformatics; 2013 Sep; 14():285. PubMed ID: 24070402 [TBL] [Abstract][Full Text] [Related]
40. Application of Machine Learning Approaches for Protein-protein Interactions Prediction. Zhang M; Su Q; Lu Y; Zhao M; Niu B Med Chem; 2017; 13(6):506-514. PubMed ID: 28530547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]