These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 24469547)
1. Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. Jhala YK; Vyas RV; Shelat HN; Patel HK; Patel HK; Patel KT World J Microbiol Biotechnol; 2014 Jun; 30(6):1845-60. PubMed ID: 24469547 [TBL] [Abstract][Full Text] [Related]
2. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Inagaki F; Tsunogai U; Suzuki M; Kosaka A; Machiyama H; Takai K; Nunoura T; Nealson KH; Horikoshi K Appl Environ Microbiol; 2004 Dec; 70(12):7445-55. PubMed ID: 15574947 [TBL] [Abstract][Full Text] [Related]
3. Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. Rani V; Bhatia A; Nain L; Tomar GS; Kaushik R World J Microbiol Biotechnol; 2021 Feb; 37(4):56. PubMed ID: 33619649 [TBL] [Abstract][Full Text] [Related]
4. [Methanotrophic communities in the soils of Russian northern taiga and subarctic tundra]. Kaliuzhnaia MG; Makutina VA; Rusakova TG; Nikitin DV; Khmelenina VN; Dmitriev VV; Trotsenko IuA Mikrobiologiia; 2002; 71(2):264-71. PubMed ID: 12024830 [TBL] [Abstract][Full Text] [Related]
5. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Horz HP; Yimga MT; Liesack W Appl Environ Microbiol; 2001 Sep; 67(9):4177-85. PubMed ID: 11526021 [TBL] [Abstract][Full Text] [Related]
6. Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments. Heyer J; Galchenko VF; Dunfield PF Microbiology (Reading); 2002 Sep; 148(Pt 9):2831-2846. PubMed ID: 12213929 [TBL] [Abstract][Full Text] [Related]
8. Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Morris SA; Radajewski S; Willison TW; Murrell JC Appl Environ Microbiol; 2002 Mar; 68(3):1446-53. PubMed ID: 11872500 [TBL] [Abstract][Full Text] [Related]
10. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Henckel T; Roslev P; Conrad R Environ Microbiol; 2000 Dec; 2(6):666-79. PubMed ID: 11214799 [TBL] [Abstract][Full Text] [Related]
11. Dry/Wet cycles change the activity and population dynamics of methanotrophs in rice field soil. Ma K; Conrad R; Lu Y Appl Environ Microbiol; 2013 Aug; 79(16):4932-9. PubMed ID: 23770899 [TBL] [Abstract][Full Text] [Related]
12. A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase. Nguyen NL; Yu WJ; Yang HY; Kim JG; Jung MY; Park SJ; Roh SW; Rhee SK J Microbiol; 2017 Oct; 55(10):775-782. PubMed ID: 28956349 [TBL] [Abstract][Full Text] [Related]
13. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes. Chen J; Zhou Z; Gu JD Appl Microbiol Biotechnol; 2015 Feb; 99(3):1463-73. PubMed ID: 25219532 [TBL] [Abstract][Full Text] [Related]
14. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Angel R; Conrad R Environ Microbiol; 2009 Oct; 11(10):2598-610. PubMed ID: 19601957 [TBL] [Abstract][Full Text] [Related]
15. Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Shen LD; Huang Q; He ZF; Lian X; Liu S; He YF; Lou LP; Xu XY; Zheng P; Hu BL Appl Microbiol Biotechnol; 2015 Jan; 99(1):349-57. PubMed ID: 25242345 [TBL] [Abstract][Full Text] [Related]
16. Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). Dianou D; Ueno C; Ogiso T; Kimura M; Asakawa S Microbes Environ; 2012; 27(3):278-87. PubMed ID: 22446309 [TBL] [Abstract][Full Text] [Related]
17. An investigation of soil and groundwater metagenomes for genes encoding soluble and particulate methane monooxygenase, toluene-4-monoxygenase, propane monooxygenase and phenol hydroxylase. Cupples AM; Dang H; Foss K; Bernstein A; Thelusmond JR Arch Microbiol; 2024 Jul; 206(8):363. PubMed ID: 39073473 [TBL] [Abstract][Full Text] [Related]
18. Composition of methane-oxidizing bacterial communities as a function of nutrient loading in the Florida everglades. Chauhan A; Pathak A; Ogram A Microb Ecol; 2012 Oct; 64(3):750-9. PubMed ID: 22544346 [TBL] [Abstract][Full Text] [Related]
19. Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Anesti V; Vohra J; Goonetilleka S; McDonald IR; Sträubler B; Stackebrandt E; Kelly DP; Wood AP Environ Microbiol; 2004 Aug; 6(8):820-30. PubMed ID: 15250884 [TBL] [Abstract][Full Text] [Related]
20. Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. Biderre-Petit C; Jézéquel D; Dugat-Bony E; Lopes F; Kuever J; Borrel G; Viollier E; Fonty G; Peyret P FEMS Microbiol Ecol; 2011 Sep; 77(3):533-45. PubMed ID: 21595728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]