These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 24469595)

  • 1. Current and emerging opportunities for molecular simulations in structure-based drug design.
    Michel J
    Phys Chem Chem Phys; 2014 Mar; 16(10):4465-77. PubMed ID: 24469595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
    Vanommeslaeghe K; MacKerell AD
    Biochim Biophys Acta; 2015 May; 1850(5):861-871. PubMed ID: 25149274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3.
    Diehl C; Engström O; Delaine T; Håkansson M; Genheden S; Modig K; Leffler H; Ryde U; Nilsson UJ; Akke M
    J Am Chem Soc; 2010 Oct; 132(41):14577-89. PubMed ID: 20873837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions.
    Gresh N
    Curr Pharm Des; 2006; 12(17):2121-58. PubMed ID: 16796560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structure-based drug design].
    Ferenczy G
    Acta Pharm Hung; 1998 Jan; 68(1):21-31. PubMed ID: 9528146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR-based structural characterization of large protein-ligand interactions.
    Pellecchia M; Meininger D; Dong Q; Chang E; Jack R; Sem DS
    J Biomol NMR; 2002 Feb; 22(2):165-73. PubMed ID: 11883777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular motions in drug design: the coming age of the metadynamics method.
    Biarnés X; Bongarzone S; Vargiu AV; Carloni P; Ruggerone P
    J Comput Aided Mol Des; 2011 May; 25(5):395-402. PubMed ID: 21327922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein simulation and drug design.
    Wong CF; McCammon AJ
    Adv Protein Chem; 2003; 66():87-121. PubMed ID: 14631817
    [No Abstract]   [Full Text] [Related]  

  • 10. Selecting Conformational Ensembles Using Residual Electron and Anomalous Density (READ).
    Salmon L; Ahlstrom LS; Bardwell JCA; Horowitz S
    Methods Mol Biol; 2018; 1764():491-504. PubMed ID: 29605935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in modeling of biomolecular interactions.
    Cai CZ; Li ZR; Wang WL; Chen YZ
    Acta Pharmacol Sin; 2004 Jan; 25(1):1-8. PubMed ID: 14704115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are induced fit protein conformational changes caused by ligand-binding predictable? A molecular dynamics investigation.
    Gao C; Desaphy J; Vieth M
    J Comput Chem; 2017 Jun; 38(15):1229-1237. PubMed ID: 28419481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From drug target to leads--sketching a physicochemical pathway for lead molecule design in silico.
    Shaikh SA; Jain T; Sandhu G; Latha N; Jayaram B
    Curr Pharm Des; 2007; 13(34):3454-70. PubMed ID: 18220783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of protein-ligand interaction fingerprints in docking.
    Brewerton SC
    Curr Opin Drug Discov Devel; 2008 May; 11(3):356-64. PubMed ID: 18428089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the role of receptor flexibility in structure-based drug discovery.
    Feixas F; Lindert S; Sinko W; McCammon JA
    Biophys Chem; 2014 Feb; 186():31-45. PubMed ID: 24332165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead optimization via high-throughput molecular docking.
    Joseph-McCarthy D; Baber JC; Feyfant E; Thompson DC; Humblet C
    Curr Opin Drug Discov Devel; 2007 May; 10(3):264-74. PubMed ID: 17554852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes.
    Martin SF; Clements JH
    Annu Rev Biochem; 2013; 82():267-93. PubMed ID: 23746256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening.
    Zavodszky MI; Sanschagrin PC; Korde RS; Kuhn LA
    J Comput Aided Mol Des; 2002 Dec; 16(12):883-902. PubMed ID: 12825621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational tools for the analysis and visualization of multiple protein-ligand complexes.
    O'Brien SE; Brown DG; Mills JE; Phillips C; Morris G
    J Mol Graph Model; 2005 Dec; 24(3):186-94. PubMed ID: 16169759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.