These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24469777)

  • 1. Acid and alkaline invertases in roots and nodules of Lupinus angustifolius infected with Rhizobium lupini.
    Robertson JG; Taylor MP
    Planta; 1973 Mar; 112(1):1-6. PubMed ID: 24469777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid and alkaline invertases in suspension cultures of sugar beet cells.
    Masuda H; Takahashi T; Sugawara S
    Plant Physiol; 1988 Jan; 86(1):312-7. PubMed ID: 16665887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes of sucrose breakdown in soybean nodules: alkaline invertase.
    Morell M; Copeland L
    Plant Physiol; 1984 Apr; 74(4):1030-4. PubMed ID: 16663498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes of sucrose, maltose, and α,α-trehalose catabolism in soybean root nodules.
    Streeter JG
    Planta; 1982 Jul; 155(2):112-5. PubMed ID: 24271663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline β-fructofuranosidases of tuberous roots: Possible physiological function.
    Ricardo CP
    Planta; 1974 Dec; 118(4):333-43. PubMed ID: 24442377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the Number, Viability, and Amino-acid-incorporating Activity of Rhizobium Bacteroids during Lupin Nodule Development.
    Sutton WD; Jepsen NM; Shaw BD
    Plant Physiol; 1977 Apr; 59(4):741-4. PubMed ID: 16659929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Bradyrhizobium lupini comb. nov.
    Peix A; Ramírez-Bahena MH; Flores-Félix JD; Alonso de la Vega P; Rivas R; Mateos PF; Igual JM; Martínez-Molina E; Trujillo ME; Velázquez E
    Int J Syst Evol Microbiol; 2015 Apr; 65(Pt 4):1213-1219. PubMed ID: 25609676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase.
    Flemetakis E; Efrose RC; Ott T; Stedel C; Aivalakis G; Udvardi MK; Katinakis P
    Plant Mol Biol; 2006 Sep; 62(1-2):53-69. PubMed ID: 16897473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic evidence on how iron deficiency limits nodule initiation in Lupinus angustifolius L.
    Tang C; Robson AD; Dilworth MJ; Kuo J
    New Phytol; 1992 Jul; 121(3):457-467. PubMed ID: 33874148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition.
    Ricardo CP; Sovia D
    Planta; 1974 Mar; 118(1):43-55. PubMed ID: 24442198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome sequence of Micromonospora lupini Lupac 08, isolated from root nodules of Lupinus angustifolius.
    Alonso-Vega P; Normand P; Bacigalupe R; Pujic P; Lajus A; Vallenet D; Carro L; Coll P; Trujillo ME
    J Bacteriol; 2012 Aug; 194(15):4135. PubMed ID: 22815450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine structure of bacteroids in root nodules of Vigna sinensis, Acacia longifolia, Viminaria juncea, and Lupinus angustifolius.
    Dart PJ; Mercer FV
    J Bacteriol; 1966 Mar; 91(3):1314-9. PubMed ID: 5929757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of phenolic secondary metabolite profiles in the reaction of narrow leaf lupin (
    Wojakowska A; Muth D; Narożna D; Mądrzak C; Stobiecki M; Kachlicki P
    Metabolomics; 2013 Jun; 9(3):575-589. PubMed ID: 23678343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of amino acids from sucrose and Krebs cycle metabolites by Rhizobium lupini bacteroids.
    Kretovich WL; Kariakina TI; Kazakova OV; Sidelnikova LI; Kaloshina GS; Shaposhnikov GL
    Mol Cell Biochem; 1983; 51(1):61-6. PubMed ID: 6855750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology.
    Funayama-Noguchi S; Noguchi K; Terashima I
    Plant Cell Environ; 2015 Mar; 38(3):399-410. PubMed ID: 24941862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonia assimilation by rhizobium cultures and bacteroids.
    Brown CM; Dilworth MJ
    J Gen Microbiol; 1975 Jan; 86(1):39-48. PubMed ID: 234505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius.
    Trujillo ME; Kroppenstedt RM; Schumann P; Martínez-Molina E
    Int J Syst Evol Microbiol; 2006 Feb; 56(Pt 2):407-411. PubMed ID: 16449448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redifferentiation of bacteria isolated from Lotus japonicus root nodules colonized by Rhizobium sp. NGR234.
    Müller J; Wiemken A; Boller T
    J Exp Bot; 2001 Nov; 52(364):2181-6. PubMed ID: 11604457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of Rhizobium japonicum, Rhizobium lupini, Rhizobium trifolii, Rhizobium leguminosarum and of bacteroids by uptake of 2-ketoglutaric acid, glutamic acid and phosphate.
    Werner D; Berghäuser K
    Arch Microbiol; 1976 Apr; 107(3):257-62. PubMed ID: 818969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius.
    Trujillo ME; Kroppenstedt RM; Fernández-Molinero C; Schumann P; Martínez-Molina E
    Int J Syst Evol Microbiol; 2007 Dec; 57(Pt 12):2799-2804. PubMed ID: 18048727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.