BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24469792)

  • 1. Functional truncated membrane pores.
    Stoddart D; Ayub M; Höfler L; Raychaudhuri P; Klingelhoefer JW; Maglia G; Heron A; Bayley H
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2425-30. PubMed ID: 24469792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map.
    Aksimentiev A; Schulten K
    Biophys J; 2005 Jun; 88(6):3745-61. PubMed ID: 15764651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O).
    Lin Q; London E
    J Biol Chem; 2014 Feb; 289(9):5467-78. PubMed ID: 24398685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossing the hydrophobic barrier: insertion of membrane proteins.
    Engelman DM
    Science; 1996 Dec; 274(5294):1850-1. PubMed ID: 8984645
    [No Abstract]   [Full Text] [Related]  

  • 5. Self-assembled alpha-hemolysin pores in an S-layer-supported lipid bilayer.
    Schuster B; Pum D; Braha O; Bayley H; Sleytr UB
    Biochim Biophys Acta; 1998 Mar; 1370(2):280-8. PubMed ID: 9545583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore.
    Song L; Hobaugh MR; Shustak C; Cheley S; Bayley H; Gouaux JE
    Science; 1996 Dec; 274(5294):1859-66. PubMed ID: 8943190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous measurement of ionic current and fluorescence from single protein pores.
    Heron AJ; Thompson JR; Cronin B; Bayley H; Wallace MI
    J Am Chem Soc; 2009 Feb; 131(5):1652-3. PubMed ID: 19146373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Study of Lipid and Cholesterol Reorganization Due to Membrane Binding and Pore Formation by Listeriolysin O.
    Cheerla R; Ayappa KG
    J Membr Biol; 2020 Dec; 253(6):535-550. PubMed ID: 33118046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond Saffman-Delbruck approximation: a new regime for 2D diffusion of α-hemolysin complexes in supported lipid bilayer.
    Harb F; Sarkis J; Ferte N; Tinland B
    Eur Phys J E Soft Matter; 2012 Nov; 35(11):118. PubMed ID: 23160766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A.
    Sathyanarayana P; Visweswariah SS; Ayappa KG
    Acc Chem Res; 2021 Jan; 54(1):120-131. PubMed ID: 33291882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch.
    Walker B; Braha O; Cheley S; Bayley H
    Chem Biol; 1995 Feb; 2(2):99-105. PubMed ID: 9383410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid peptide pores and the beta sheet conformation.
    Kagan BL; Thundimadathil J
    Adv Exp Med Biol; 2010; 677():150-67. PubMed ID: 20687488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous oligomerization of a staphylococcal alpha-hemolysin conformationally constrained by removal of residues that form the transmembrane beta-barrel.
    Cheley S; Malghani MS; Song L; Hobaugh M; Gouaux JE; Yang J; Bayley H
    Protein Eng; 1997 Dec; 10(12):1433-43. PubMed ID: 9543005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The internal cavity of the staphylococcal alpha-hemolysin pore accommodates approximately 175 exogenous amino acid residues.
    Jung Y; Cheley S; Braha O; Bayley H
    Biochemistry; 2005 Jun; 44(25):8919-29. PubMed ID: 15966717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore formation of thermostable direct hemolysin secreted from Vibrio parahaemolyticus in lipid bilayers.
    Takahashi A; Yamamoto C; Kodama T; Yamashita K; Harada N; Nakano M; Honda T; Nakaya Y
    Int J Toxicol; 2006; 25(5):409-18. PubMed ID: 16940013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorinated amphiphiles control the insertion of α-hemolysin pores into lipid bilayers.
    Raychaudhuri P; Li Q; Mason A; Mikhailova E; Heron AJ; Bayley H
    Biochemistry; 2011 Mar; 50(10):1599-606. PubMed ID: 21275394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore.
    Movileanu L; Howorka S; Braha O; Bayley H
    Nat Biotechnol; 2000 Oct; 18(10):1091-5. PubMed ID: 11017049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional protein pore with a "retro" transmembrane domain.
    Cheley S; Braha O; Lu X; Conlan S; Bayley H
    Protein Sci; 1999 Jun; 8(6):1257-67. PubMed ID: 10386875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-driven DNA translocations through a nanopore.
    Meller A; Nivon L; Branton D
    Phys Rev Lett; 2001 Apr; 86(15):3435-8. PubMed ID: 11327989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.