These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24469808)

  • 21. Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
    Zhang Q; Kang M; Peterson RD; Feigon J
    J Am Chem Soc; 2011 Apr; 133(14):5190-3. PubMed ID: 21410253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational capture of the SAM-II riboswitch.
    Haller A; Rieder U; Aigner M; Blanchard SC; Micura R
    Nat Chem Biol; 2011 Jun; 7(6):393-400. PubMed ID: 21532598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
    Suddala KC; Rinaldi AJ; Feng J; Mustoe AM; Eichhorn CD; Liberman JA; Wedekind JE; Al-Hashimi HM; Brooks CL; Walter NG
    Nucleic Acids Res; 2013 Dec; 41(22):10462-75. PubMed ID: 24003028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microsecond Folding of preQ
    Sarkar B; Ishii K; Tahara T
    J Am Chem Soc; 2021 Jun; 143(21):7968-7978. PubMed ID: 34013733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling Green Fluorescent Protein Expression with Chemical Modification to Probe Functionally Relevant Riboswitch Conformations in Live Bacteria.
    Dutta D; Belashov IA; Wedekind JE
    Biochemistry; 2018 Aug; 57(31):4620-4628. PubMed ID: 29897738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ
    Neuner E; Frener M; Lusser A; Micura R
    RNA Biol; 2018; 15(10):1376-1383. PubMed ID: 30332908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria.
    Meyer MM; Roth A; Chervin SM; Garcia GA; Breaker RR
    RNA; 2008 Apr; 14(4):685-95. PubMed ID: 18305186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
    Kang M; Peterson R; Feigon J
    Mol Cell; 2009 Mar; 33(6):784-90. PubMed ID: 19285444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Insight into the Unbound State of the DNA Analogue of the PreQ
    Reiling-Steffensmeier C; Marky LA
    Biochemistry; 2017 Nov; 56(47):6231-6239. PubMed ID: 29076719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches.
    Matyjasik MM; Batey RT
    Nucleic Acids Res; 2019 Nov; 47(20):10931-10941. PubMed ID: 31598729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes.
    McCown PJ; Liang JJ; Weinberg Z; Breaker RR
    Chem Biol; 2014 Jul; 21(7):880-889. PubMed ID: 25036777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy.
    Chen B; Zuo X; Wang YX; Dayie TK
    Nucleic Acids Res; 2012 Apr; 40(7):3117-30. PubMed ID: 22139931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure of the Guanidine III Riboswitch.
    Huang L; Wang J; Wilson TJ; Lilley DMJ
    Cell Chem Biol; 2017 Nov; 24(11):1407-1415.e2. PubMed ID: 28988949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two riboswitch classes that share a common ligand-binding fold show major differences in the ability to accommodate mutations.
    Srivastava Y; Akinyemi O; Rohe TC; Pritchett EM; Baker CD; Sharma A; Jenkins JL; Mathews DH; Wedekind JE
    Nucleic Acids Res; 2024 Nov; 52(21):13152-13173. PubMed ID: 39413212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A natural riboswitch scaffold with self-methylation activity.
    Flemmich L; Heel S; Moreno S; Breuker K; Micura R
    Nat Commun; 2021 Jun; 12(1):3877. PubMed ID: 34162884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural dynamics of a single-stranded RNA-helix junction using NMR.
    Eichhorn CD; Al-Hashimi HM
    RNA; 2014 Jun; 20(6):782-91. PubMed ID: 24742933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.