These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24469808)

  • 41. Protein unties the pseudoknot: S1-mediated unfolding of RNA higher order structure.
    Lund PE; Chatterjee S; Daher M; Walter NG
    Nucleic Acids Res; 2020 Feb; 48(4):2107-2125. PubMed ID: 31832686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A chemical probe based on the PreQ
    Balaratnam S; Rhodes C; Bume DD; Connelly C; Lai CC; Kelley JA; Yazdani K; Homan PJ; Incarnato D; Numata T; Schneekloth JS
    Nat Commun; 2021 Oct; 12(1):5856. PubMed ID: 34615874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
    Wacker A; Buck J; Mathieu D; Richter C; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2011 Aug; 39(15):6802-12. PubMed ID: 21576236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binding free energy decomposition and multiple unbinding paths of buried ligands in a PreQ1 riboswitch.
    Hu G; Zhou HX
    PLoS Comput Biol; 2021 Nov; 17(11):e1009603. PubMed ID: 34767553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser.
    Ding J; Swain M; Yu P; Stagno JR; Wang YX
    J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanistic Analysis of Riboswitch Ligand Interactions Provides Insights into Pharmacological Control over Gene Expression.
    Parmar S; Bume DD; Conelly C; Boer R; Prestwood PR; Wang Z; Labuhn H; Sinnadurai K; Feri A; Ouellet J; Homan P; Numata T; Schneekloth JS
    bioRxiv; 2024 Feb; ():. PubMed ID: 38903087
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch.
    Huang L; Ishibe-Murakami S; Patel DJ; Serganov A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14801-6. PubMed ID: 21873197
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural basis for control of bacterial RNA polymerase pausing by a riboswitch and its ligand.
    Chauvier A; Porta JC; Deb I; Ellinger E; Meze K; Frank AT; Ohi MD; Walter NG
    Nat Struct Mol Biol; 2023 Jul; 30(7):902-913. PubMed ID: 37264140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase.
    Klein DJ; Edwards TE; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2009 Mar; 16(3):343-4. PubMed ID: 19234468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-molecule FRET observes opposing effects of urea and TMAO on structurally similar meso- and thermophilic riboswitch RNAs.
    Hou Q; Chatterjee S; Lund PE; Suddala KC; Walter NG
    Nucleic Acids Res; 2023 Nov; 51(20):11345-11357. PubMed ID: 37855661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study.
    Banáš P; Sklenovský P; Wedekind JE; Šponer J; Otyepka M
    J Phys Chem B; 2012 Oct; 116(42):12721-34. PubMed ID: 22998634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bacterial 2'-Deoxyguanosine Riboswitch Classes as Potential Targets for Antibiotics: A Structure and Dynamics Study.
    Antunes D; Santos LHS; Caffarena ER; Guimarães ACR
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216040
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.
    Doshi U; Kelley JM; Hamelberg D
    RNA; 2012 Feb; 18(2):300-7. PubMed ID: 22194311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mg(2+) shifts ligand-mediated folding of a riboswitch from induced-fit to conformational selection.
    Suddala KC; Wang J; Hou Q; Walter NG
    J Am Chem Soc; 2015 Nov; 137(44):14075-83. PubMed ID: 26471732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ITC analysis of ligand binding to preQ₁ riboswitches.
    Liberman JA; Bogue JT; Jenkins JL; Salim M; Wedekind JE
    Methods Enzymol; 2014; 549():435-50. PubMed ID: 25432759
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unraveling the structural complexity in a single-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch.
    Eichhorn CD; Feng J; Suddala KC; Walter NG; Brooks CL; Al-Hashimi HM
    Nucleic Acids Res; 2012 Feb; 40(3):1345-55. PubMed ID: 22009676
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine.
    Weickhmann AK; Keller H; Duchardt-Ferner E; Strebitzer E; Juen MA; Kremser J; Wurm JP; Kreutz C; Wöhnert J
    Biomol NMR Assign; 2018 Oct; 12(2):329-334. PubMed ID: 30051308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers.
    Rieder U; Lang K; Kreutz C; Polacek N; Micura R
    Chembiochem; 2009 May; 10(7):1141-4. PubMed ID: 19382115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.