These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24469959)
1. One-degree-of-freedom spherical model for the passive motion of the human ankle joint. Sancisi N; Baldisserri B; Parenti-Castelli V; Belvedere C; Leardini A Med Biol Eng Comput; 2014 Apr; 52(4):363-73. PubMed ID: 24469959 [TBL] [Abstract][Full Text] [Related]
2. Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Di Gregorio R; Parenti-Castelli V; O'Connor JJ; Leardini A Med Biol Eng Comput; 2007 Mar; 45(3):305-13. PubMed ID: 17295023 [TBL] [Abstract][Full Text] [Related]
3. A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint. Franci R; Parenti-Castelli V; Belvedere C; Leardini A J Biomech; 2009 Jul; 42(10):1403-1408. PubMed ID: 19524926 [TBL] [Abstract][Full Text] [Related]
4. A geometric model of the human ankle joint. Leardini A; O'Connor JJ; Catani F; Giannini S J Biomech; 1999 Jun; 32(6):585-91. PubMed ID: 10332622 [TBL] [Abstract][Full Text] [Related]
5. Kinematics of the human ankle complex in passive flexion; a single degree of freedom system. Leardini A; O'Connor JJ; Catani F; Giannini S J Biomech; 1999 Feb; 32(2):111-8. PubMed ID: 10052915 [TBL] [Abstract][Full Text] [Related]
6. A one-degree-of-freedom spherical mechanism for human knee joint modelling. Sancisi N; Zannoli D; Parenti-Castelli V; Belvedere C; Leardini A Proc Inst Mech Eng H; 2011 Aug; 225(8):725-35. PubMed ID: 21922950 [TBL] [Abstract][Full Text] [Related]
7. Ligament fibre recruitment at the human ankle joint complex in passive flexion. Stagni R; Leardini A; Ensini A J Biomech; 2004 Dec; 37(12):1823-9. PubMed ID: 15519590 [TBL] [Abstract][Full Text] [Related]
8. Passive motion characteristics of the talocrural and the subtalar joint by dual Euler angles. Wong Y; Kim W; Ying N J Biomech; 2005 Dec; 38(12):2480-5. PubMed ID: 16214496 [TBL] [Abstract][Full Text] [Related]
9. A three-dimensional ankle kinetostatic model to simulate loaded and unloaded joint motion. Forlani M; Sancisi N; Parenti-Castelli V J Biomech Eng; 2015 Jun; 137(6):061005. PubMed ID: 25751452 [TBL] [Abstract][Full Text] [Related]
10. Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling. Van Sint Jan S; Salvia P; Hilal I; Sholukha V; Rooze M; Clapworthy G J Biomech; 2002 Nov; 35(11):1475-84. PubMed ID: 12413966 [TBL] [Abstract][Full Text] [Related]
11. In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. van den Bogert AJ; Smith GD; Nigg BM J Biomech; 1994 Dec; 27(12):1477-88. PubMed ID: 7806555 [TBL] [Abstract][Full Text] [Related]
12. Kinematics of the three components of a total ankle replacement: in vivo fluoroscopic analysis. Cenni F; Leardini A; Belvedere C; Bugané F; Cremonini K; Miscione MT; Giannini S Foot Ankle Int; 2012 Apr; 33(4):290-300. PubMed ID: 22735201 [TBL] [Abstract][Full Text] [Related]
13. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. Liacouras PC; Wayne JS J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384 [TBL] [Abstract][Full Text] [Related]
14. The role of the passive structures in the mobility and stability of the human ankle joint: a literature review. Leardini A; O'Connor JJ; Catani F; Giannini S Foot Ankle Int; 2000 Jul; 21(7):602-15. PubMed ID: 10919630 [TBL] [Abstract][Full Text] [Related]
15. Kinematics of the proximal tibiofibular joint is influenced by ligament integrity, knee and ankle mobility: an exploratory cadaver study. Alves-da-Silva T; Guerra-Pinto F; Matias R; Pessoa P Knee Surg Sports Traumatol Arthrosc; 2019 Feb; 27(2):405-411. PubMed ID: 30056605 [TBL] [Abstract][Full Text] [Related]
16. Articular contact at the tibiotalar joint in passive flexion. Corazza F; Stagni R; Castelli VP; Leardini A J Biomech; 2005 Jun; 38(6):1205-12. PubMed ID: 15863104 [TBL] [Abstract][Full Text] [Related]
17. [Kinematics analysis and scale optimization of four degree of freedom generalized spherical parallel mechanism for ankle joint rehabilitation]. Liu X; Zhang J; Liu C; Niu J; Qi K; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):286-294. PubMed ID: 33913288 [TBL] [Abstract][Full Text] [Related]
18. Geometry and mechanics of the human ankle complex and ankle prosthesis design. Leardini A Clin Biomech (Bristol); 2001 Oct; 16(8):706-9. PubMed ID: 11535353 [TBL] [Abstract][Full Text] [Related]
19. Determination of consistent patterns of range of motion in the ankle joint with a computed tomography stress-test. Tuijthof GJ; Zengerink M; Beimers L; Jonges R; Maas M; van Dijk CN; Blankevoort L Clin Biomech (Bristol); 2009 Jul; 24(6):517-23. PubMed ID: 19356831 [TBL] [Abstract][Full Text] [Related]
20. The Mechanical Functionality of the EXO-L Ankle Brace: Assessment With a 3-Dimensional Computed Tomography Stress Test. Kleipool RP; Natenstedt JJ; Streekstra GJ; Dobbe JG; Gerards RM; Blankevoort L; Tuijthof GJ Am J Sports Med; 2016 Jan; 44(1):171-6. PubMed ID: 26589838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]