These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24470158)
1. Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2). Mills RD; Mulhern TD; Liu F; Culvenor JG; Cheng HC Hum Mutat; 2014 Apr; 35(4):395-412. PubMed ID: 24470158 [TBL] [Abstract][Full Text] [Related]
2. Conformational heterogeneity of the Roc domains in C. tepidum Roc-COR and implications for human LRRK2 Parkinson mutations. Rudi K; Ho FY; Gilsbach BK; Pots H; Wittinghofer A; Kortholt A; Klare JP Biosci Rep; 2015 Aug; 35(5):. PubMed ID: 26310572 [TBL] [Abstract][Full Text] [Related]
3. The Parkinson disease gene LRRK2: evolutionary and structural insights. MarĂn I Mol Biol Evol; 2006 Dec; 23(12):2423-33. PubMed ID: 16966681 [TBL] [Abstract][Full Text] [Related]
4. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. Gotthardt K; Weyand M; Kortholt A; Van Haastert PJ; Wittinghofer A EMBO J; 2008 Aug; 27(16):2239-49. PubMed ID: 18650931 [TBL] [Abstract][Full Text] [Related]
5. Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations. Mills RD; Mulhern TD; Cheng HC; Culvenor JG Biochem Soc Trans; 2012 Oct; 40(5):1086-9. PubMed ID: 22988870 [TBL] [Abstract][Full Text] [Related]
6. The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties. Mills RD; Liang LY; Lio DS; Mok YF; Mulhern TD; Cao G; Griffin M; Kenche VB; Culvenor JG; Cheng HC J Neurochem; 2018 Nov; 147(3):409-428. PubMed ID: 30091236 [TBL] [Abstract][Full Text] [Related]
7. Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. Vancraenenbroeck R; Lobbestael E; Weeks SD; Strelkov SV; Baekelandt V; Taymans JM; De Maeyer M Biochim Biophys Acta; 2012 Mar; 1824(3):450-60. PubMed ID: 22251894 [TBL] [Abstract][Full Text] [Related]
8. Understanding the GTPase Activity of LRRK2: Regulation, Function, and Neurotoxicity. Nguyen AP; Moore DJ Adv Neurobiol; 2017; 14():71-88. PubMed ID: 28353279 [TBL] [Abstract][Full Text] [Related]
9. The GTPase function of LRRK2. Taymans JM Biochem Soc Trans; 2012 Oct; 40(5):1063-9. PubMed ID: 22988866 [TBL] [Abstract][Full Text] [Related]
10. Contribution of GTPase activity to LRRK2-associated Parkinson disease. Tsika E; Moore DJ Small GTPases; 2013; 4(3):164-70. PubMed ID: 24025585 [TBL] [Abstract][Full Text] [Related]
11. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Ito G; Okai T; Fujino G; Takeda K; Ichijo H; Katada T; Iwatsubo T Biochemistry; 2007 Feb; 46(5):1380-8. PubMed ID: 17260967 [TBL] [Abstract][Full Text] [Related]
12. LRRK2 autophosphorylation enhances its GTPase activity. Liu Z; Mobley JA; DeLucas LJ; Kahn RA; West AB FASEB J; 2016 Jan; 30(1):336-47. PubMed ID: 26396237 [TBL] [Abstract][Full Text] [Related]
13. Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. Gloeckner CJ; Boldt K; von Zweydorf F; Helm S; Wiesent L; Sarioglu H; Ueffing M J Proteome Res; 2010 Apr; 9(4):1738-45. PubMed ID: 20108944 [TBL] [Abstract][Full Text] [Related]
14. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Deng J; Lewis PA; Greggio E; Sluch E; Beilina A; Cookson MR Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1499-504. PubMed ID: 18230735 [TBL] [Abstract][Full Text] [Related]
15. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Gloeckner CJ; Kinkl N; Schumacher A; Braun RJ; O'Neill E; Meitinger T; Kolch W; Prokisch H; Ueffing M Hum Mol Genet; 2006 Jan; 15(2):223-32. PubMed ID: 16321986 [TBL] [Abstract][Full Text] [Related]
16. Revisiting the Roco G-protein cycle. Terheyden S; Ho FY; Gilsbach BK; Wittinghofer A; Kortholt A Biochem J; 2015 Jan; 465(1):139-47. PubMed ID: 25317655 [TBL] [Abstract][Full Text] [Related]
17. Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants. Li X; Tan YC; Poulose S; Olanow CW; Huang XY; Yue Z J Neurochem; 2007 Oct; 103(1):238-47. PubMed ID: 17623048 [TBL] [Abstract][Full Text] [Related]
18. ROCO kinase activity is controlled by internal GTPase function. Weiss B Sci Signal; 2008 Jun; 1(23):pe27. PubMed ID: 18544747 [TBL] [Abstract][Full Text] [Related]
19. Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions? Civiero L; Bubacco L Biochem Soc Trans; 2012 Oct; 40(5):1095-101. PubMed ID: 22988872 [TBL] [Abstract][Full Text] [Related]
20. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways. Sancho RM; Law BM; Harvey K Hum Mol Genet; 2009 Oct; 18(20):3955-68. PubMed ID: 19625296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]