These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24470223)

  • 1. Time-lapse microscopy using smartphone with augmented reality markers.
    Baek D; Cho S; Yun K; Youn K; Bang H
    Microsc Res Tech; 2014 Apr; 77(4):243-9. PubMed ID: 24470223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics.
    Hernández Vera R; Schwan E; Fatsis-Kavalopoulos N; Kreuger J
    PLoS One; 2016; 11(12):e0167583. PubMed ID: 28002463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution, time-lapse imaging for ecosystem-scale phenotyping in the field.
    Brown T; Zimmermann C; Panneton W; Noah N; Borevitz J
    Methods Mol Biol; 2012; 918():71-96. PubMed ID: 22893287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interacting multiple model filter-based autofocus strategy for confocal time-lapse microscopy.
    Chowdhury S; Kandhavelu M; Yli-Harja O; Ribeiro AS
    J Microsc; 2012 Mar; 245(3):265-75. PubMed ID: 22091730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, implementation and accuracy of a prototype for medical augmented reality.
    Pandya A; Siadat MR; Auner G
    Comput Aided Surg; 2005 Jan; 10(1):23-35. PubMed ID: 16199379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel augmented reality system of image projection for image-guided neurosurgery.
    Mahvash M; Besharati Tabrizi L
    Acta Neurochir (Wien); 2013 May; 155(5):943-7. PubMed ID: 23494133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-lapse imaging of membrane traffic in living cells.
    Snapp EL; Lajoie P
    Cold Spring Harb Protoc; 2011 Nov; 2011(11):1362-5. PubMed ID: 22046037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HelioScan: a software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility.
    Langer D; van 't Hoff M; Keller AJ; Nagaraja C; Pfäffli OA; Göldi M; Kasper H; Helmchen F
    J Neurosci Methods; 2013 Apr; 215(1):38-52. PubMed ID: 23416135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.
    Bray MA; Carpenter AE
    BMC Bioinformatics; 2015 Nov; 16():368. PubMed ID: 26537300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.
    Klein J; Leupold S; Biegler I; Biedendieck R; Münch R; Jahn D
    Bioinformatics; 2012 Sep; 28(17):2276-7. PubMed ID: 22772947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial.
    Conaghan J; Chen AA; Willman SP; Ivani K; Chenette PE; Boostanfar R; Baker VL; Adamson GD; Abusief ME; Gvakharia M; Loewke KE; Shen S
    Fertil Steril; 2013 Aug; 100(2):412-9.e5. PubMed ID: 23721712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Informatics in radiology: Intuitive user interface for 3D image manipulation using augmented reality and a smartphone as a remote control.
    Nakata N; Suzuki N; Hattori A; Hirai N; Miyamoto Y; Fukuda K
    Radiographics; 2012; 32(4):E169-74. PubMed ID: 22556316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated analysis of time-lapse fluorescence microscopy images: from live cell images to intracellular foci.
    Dzyubachyk O; Essers J; van Cappellen WA; Baldeyron C; Inagaki A; Niessen WJ; Meijering E
    Bioinformatics; 2010 Oct; 26(19):2424-30. PubMed ID: 20702399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlative time-lapse imaging and electron microscopy to study abscission in HeLa cells.
    Guizetti J; Mäntler J; Müller-Reichert T; Gerlich DW
    Methods Cell Biol; 2010; 96():591-601. PubMed ID: 20869539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TLM-Converter: reorganization of long time-lapse microscopy datasets for downstream image analysis.
    Puah WC; Cheok LP; Biro M; Ng WT; Wasser M
    Biotechniques; 2011 Jul; 51(1):49-50, 52-3. PubMed ID: 21781053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D active meshes: fast discrete deformable models for cell tracking in 3-D time-lapse microscopy.
    Dufour A; Thibeaux R; Labruyère E; Guillén N; Olivo-Marin JC
    IEEE Trans Image Process; 2011 Jul; 20(7):1925-37. PubMed ID: 21193379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-lapse microscopy and image analysis in basic and clinical embryo development research.
    Wong C; Chen AA; Behr B; Shen S
    Reprod Biomed Online; 2013 Feb; 26(2):120-9. PubMed ID: 23273754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised modeling of cell morphology dynamics for time-lapse microscopy.
    Zhong Q; Busetto AG; Fededa JP; Buhmann JM; Gerlich DW
    Nat Methods; 2012 May; 9(7):711-3. PubMed ID: 22635062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.