These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 24470271)
1. Structural characterization of a new N-substituted pantothenamide bound to pantothenate kinases from Klebsiella pneumoniae and Staphylococcus aureus. Hughes SJ; Antoshchenko T; Kim KP; Smil D; Park HW Proteins; 2014 Jul; 82(7):1542-8. PubMed ID: 24470271 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of Klebsiella pneumoniae pantothenate kinase in complex with N-substituted pantothenamides. Li B; Tempel W; Smil D; Bolshan Y; Schapira M; Park HW Proteins; 2013 Aug; 81(8):1466-72. PubMed ID: 23553820 [TBL] [Abstract][Full Text] [Related]
3. Variation in pantothenate kinase type determines the pantothenamide mode of action and impacts on coenzyme A salvage biosynthesis. de Villiers M; Barnard L; Koekemoer L; Snoep JL; Strauss E FEBS J; 2014 Oct; 281(20):4731-53. PubMed ID: 25156889 [TBL] [Abstract][Full Text] [Related]
4. Discovery of Potent Pantothenamide Inhibitors of Staphylococcus aureus Pantothenate Kinase through a Minimal SAR Study: Inhibition Is Due to Trapping of the Product. Hughes SJ; Barnard L; Mottaghi K; Tempel W; Antoshchenko T; Hong BS; Allali-Hassani A; Smil D; Vedadi M; Strauss E; Park HW ACS Infect Dis; 2016 Sep; 2(9):627-641. PubMed ID: 27759386 [TBL] [Abstract][Full Text] [Related]
5. Structure-activity relationships and enzyme inhibition of pantothenamide-type pantothenate kinase inhibitors. Virga KG; Zhang YM; Leonardi R; Ivey RA; Hevener K; Park HW; Jackowski S; Rock CO; Lee RE Bioorg Med Chem; 2006 Feb; 14(4):1007-20. PubMed ID: 16213731 [TBL] [Abstract][Full Text] [Related]
6. Exploring structural motifs necessary for substrate binding in the active site of Escherichia coli pantothenate kinase. Awuah E; Ma E; Hoegl A; Vong K; Habib E; Auclair K Bioorg Med Chem; 2014 Jun; 22(12):3083-90. PubMed ID: 24814884 [TBL] [Abstract][Full Text] [Related]
7. Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: implications for coenzyme A-dependent redox biology. Nicely NI; Parsonage D; Paige C; Newton GL; Fahey RC; Leonardi R; Jackowski S; Mallett TC; Claiborne A Biochemistry; 2007 Mar; 46(11):3234-45. PubMed ID: 17323930 [TBL] [Abstract][Full Text] [Related]
8. Prokaryotic type II and type III pantothenate kinases: The same monomer fold creates dimers with distinct catalytic properties. Hong BS; Yun MK; Zhang YM; Chohnan S; Rock CO; White SW; Jackowski S; Park HW; Leonardi R Structure; 2006 Aug; 14(8):1251-61. PubMed ID: 16905099 [TBL] [Abstract][Full Text] [Related]
9. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. Björkelid C; Bergfors T; Raichurkar AK; Mukherjee K; Malolanarasimhan K; Bandodkar B; Jones TA J Biol Chem; 2013 Jun; 288(25):18260-70. PubMed ID: 23661699 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of a type III pantothenate kinase: insight into the mechanism of an essential coenzyme A biosynthetic enzyme universally distributed in bacteria. Yang K; Eyobo Y; Brand LA; Martynowski D; Tomchick D; Strauss E; Zhang H J Bacteriol; 2006 Aug; 188(15):5532-40. PubMed ID: 16855243 [TBL] [Abstract][Full Text] [Related]
11. Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target. de Villiers M; Spry C; Macuamule CJ; Barnard L; Wells G; Saliba KJ; Strauss E ACS Infect Dis; 2017 Jul; 3(7):527-541. PubMed ID: 28437604 [TBL] [Abstract][Full Text] [Related]
12. A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. Leonardi R; Chohnan S; Zhang YM; Virga KG; Lee RE; Rock CO; Jackowski S J Biol Chem; 2005 Feb; 280(5):3314-22. PubMed ID: 15548531 [TBL] [Abstract][Full Text] [Related]
13. Probing the ligand preferences of the three types of bacterial pantothenate kinase. Guan J; Barnard L; Cresson J; Hoegl A; Chang JH; Strauss E; Auclair K Bioorg Med Chem; 2018 Dec; 26(22):5896-5902. PubMed ID: 30429095 [TBL] [Abstract][Full Text] [Related]
14. The basis for non-canonical ROK family function in the Coombes D; Davies JS; Newton-Vesty MC; Horne CR; Setty TG; Subramanian R; Moir JWB; Friemann R; Panjikar S; Griffin MDW; North RA; Dobson RCJ J Biol Chem; 2020 Mar; 295(10):3301-3315. PubMed ID: 31949045 [TBL] [Abstract][Full Text] [Related]
15. Invariance and variability in bacterial PanK: a study based on the crystal structure of Mycobacterium tuberculosis PanK. Das S; Kumar P; Bhor V; Surolia A; Vijayan M Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):628-38. PubMed ID: 16699190 [TBL] [Abstract][Full Text] [Related]
16. Pantothenamides are potent, on-target inhibitors of Plasmodium falciparum growth when serum pantetheinase is inactivated. Spry C; Macuamule C; Lin Z; Virga KG; Lee RE; Strauss E; Saliba KJ PLoS One; 2013; 8(2):e54974. PubMed ID: 23405100 [TBL] [Abstract][Full Text] [Related]
17. Plant coenzyme A biosynthesis: characterization of two pantothenate kinases from Arabidopsis. Tilton GB; Wedemeyer WJ; Browse J; Ohlrogge J Plant Mol Biol; 2006 Jul; 61(4-5):629-42. PubMed ID: 16897480 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the feedback regulation of Escherichia coli pantothenate kinase by coenzyme A. Yun M; Park CG; Kim JY; Rock CO; Jackowski S; Park HW J Biol Chem; 2000 Sep; 275(36):28093-9. PubMed ID: 10862768 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for substrate binding and the catalytic mechanism of type III pantothenate kinase. Yang K; Strauss E; Huerta C; Zhang H Biochemistry; 2008 Feb; 47(5):1369-80. PubMed ID: 18186650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]