BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 24470297)

  • 1. Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging.
    de Vries A; Moonen R; Yildirim M; Langereis S; Lamerichs R; Pikkemaat JA; Baroni S; Terreno E; Nicolay K; Strijkers GJ; Grüll H
    Contrast Media Mol Imaging; 2014; 9(1):83-91. PubMed ID: 24470297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative (1)H MRI, (19)F MRI, and (19)F MRS of cell-internalized perfluorocarbon paramagnetic nanoparticles.
    Kok MB; de Vries A; Abdurrachim D; Prompers JJ; Grüll H; Nicolay K; Strijkers GJ
    Contrast Media Mol Imaging; 2011; 6(1):19-27. PubMed ID: 20648660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging.
    Neubauer AM; Myerson J; Caruthers SD; Hockett FD; Winter PM; Chen J; Gaffney PJ; Robertson JD; Lanza GM; Wickline SA
    Magn Reson Med; 2008 Nov; 60(5):1066-72. PubMed ID: 18956457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity.
    Chen KJ; Wolahan SM; Wang H; Hsu CH; Chang HW; Durazo A; Hwang LP; Garcia MA; Jiang ZK; Wu L; Lin YY; Tseng HR
    Biomaterials; 2011 Mar; 32(8):2160-5. PubMed ID: 21167594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activatable 19F MRI nanoparticle probes for the detection of reducing environments.
    Nakamura T; Matsushita H; Sugihara F; Yoshioka Y; Mizukami S; Kikuchi K
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):1007-10. PubMed ID: 25413833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes.
    Morel S; Terreno E; Ugazio E; Aime S; Gasco MR
    Eur J Pharm Biopharm; 1998 Mar; 45(2):157-63. PubMed ID: 9704912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging.
    Du H; Yu J; Guo D; Yang W; Wang J; Zhang B
    Langmuir; 2016 Feb; 32(4):1155-65. PubMed ID: 26740341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of bioresponsive chelates and perfluorinated lipid nanoparticles enables in vivo MRI probe quantification.
    Gambino G; Gambino T; Angelovski G
    Chem Commun (Camb); 2020 Aug; 56(66):9433-9436. PubMed ID: 32687130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement.
    Ahrén M; Selegård L; Klasson A; Söderlind F; Abrikossova N; Skoglund C; Bengtsson T; Engström M; Käll PO; Uvdal K
    Langmuir; 2010 Apr; 26(8):5753-62. PubMed ID: 20334417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human aortic endothelial cell labeling with positive contrast gadolinium oxide nanoparticles for cellular magnetic resonance imaging at 7 Tesla.
    Loai Y; Sakib N; Janik R; Foltz WD; Cheng HL
    Mol Imaging; 2012 Apr; 11(2):166-75. PubMed ID: 22469244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective tracking of bone mesenchymal stem cells in vivo by magnetic resonance imaging using melanin-based gadolinium
    Cai WW; Wang LJ; Li SJ; Zhang XP; Li TT; Wang YH; Yang X; Xie J; Li JD; Liu SJ; Xu W; He S; Cheng Z; Fan QL; Zhang RP
    J Biomed Mater Res A; 2017 Jan; 105(1):131-137. PubMed ID: 27588709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing T
    Marangoni VS; Neumann O; Henderson L; Kaffes CC; Zhang H; Zhang R; Bishnoi S; Ayala-Orozco C; Zucolotto V; Bankson JA; Nordlander P; Halas NJ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6960-6965. PubMed ID: 28630340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles.
    Xu ZP; Kurniawan ND; Bartlett PF; Lu GQ
    Chemistry; 2007; 13(10):2824-30. PubMed ID: 17186555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Gd3Al tetranuclear complex as a potential bimodal MRI/optical imaging agent.
    Li WS; Luo J; Jiang F; Chen ZN
    Dalton Trans; 2012 Aug; 41(31):9405-10. PubMed ID: 22740063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.
    Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S
    Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.
    Chen Z; Yu D; Liu C; Yang X; Zhang N; Ma C; Song J; Lu Z
    J Drug Target; 2011 Sep; 19(8):657-65. PubMed ID: 21091273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy.
    Zhou T; Zhang S; Zhang L; Jiang T; Wang H; Huang L; Wu H; Fan Z; Jing S
    Acta Biomater; 2023 Jul; 164():496-510. PubMed ID: 37054962
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 28.