These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging. Du H; Yu J; Guo D; Yang W; Wang J; Zhang B Langmuir; 2016 Feb; 32(4):1155-65. PubMed ID: 26740341 [TBL] [Abstract][Full Text] [Related]
8. Combination of bioresponsive chelates and perfluorinated lipid nanoparticles enables in vivo MRI probe quantification. Gambino G; Gambino T; Angelovski G Chem Commun (Camb); 2020 Aug; 56(66):9433-9436. PubMed ID: 32687130 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Ahrén M; Selegård L; Klasson A; Söderlind F; Abrikossova N; Skoglund C; Bengtsson T; Engström M; Käll PO; Uvdal K Langmuir; 2010 Apr; 26(8):5753-62. PubMed ID: 20334417 [TBL] [Abstract][Full Text] [Related]
10. Human aortic endothelial cell labeling with positive contrast gadolinium oxide nanoparticles for cellular magnetic resonance imaging at 7 Tesla. Loai Y; Sakib N; Janik R; Foltz WD; Cheng HL Mol Imaging; 2012 Apr; 11(2):166-75. PubMed ID: 22469244 [TBL] [Abstract][Full Text] [Related]
11. Effective tracking of bone mesenchymal stem cells in vivo by magnetic resonance imaging using melanin-based gadolinium Cai WW; Wang LJ; Li SJ; Zhang XP; Li TT; Wang YH; Yang X; Xie J; Li JD; Liu SJ; Xu W; He S; Cheng Z; Fan QL; Zhang RP J Biomed Mater Res A; 2017 Jan; 105(1):131-137. PubMed ID: 27588709 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles. Xu ZP; Kurniawan ND; Bartlett PF; Lu GQ Chemistry; 2007; 13(10):2824-30. PubMed ID: 17186555 [TBL] [Abstract][Full Text] [Related]
14. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516 [TBL] [Abstract][Full Text] [Related]
15. A Gd3Al tetranuclear complex as a potential bimodal MRI/optical imaging agent. Li WS; Luo J; Jiang F; Chen ZN Dalton Trans; 2012 Aug; 41(31):9405-10. PubMed ID: 22740063 [TBL] [Abstract][Full Text] [Related]
16. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Yang H; Zhuang Y; Sun Y; Dai A; Shi X; Wu D; Li F; Hu H; Yang S Biomaterials; 2011 Jul; 32(20):4584-93. PubMed ID: 21458063 [TBL] [Abstract][Full Text] [Related]
17. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. Chen Z; Yu D; Liu C; Yang X; Zhang N; Ma C; Song J; Lu Z J Drug Target; 2011 Sep; 19(8):657-65. PubMed ID: 21091273 [TBL] [Abstract][Full Text] [Related]
18. Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy. Zhou T; Zhang S; Zhang L; Jiang T; Wang H; Huang L; Wu H; Fan Z; Jing S Acta Biomater; 2023 Jul; 164():496-510. PubMed ID: 37054962 [TBL] [Abstract][Full Text] [Related]