These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24470490)

  • 1. Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process.
    Garneau L; Klein H; Lavoie MF; Brochiero E; Parent L; Sauvé R
    J Gen Physiol; 2014 Feb; 143(2):289-307. PubMed ID: 24470490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process.
    Morales P; Garneau L; Klein H; Lavoie MF; Parent L; Sauvé R
    J Gen Physiol; 2013 Jul; 142(1):37-60. PubMed ID: 23797421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the rational design of constitutively active KCa3.1 mutant channels.
    Garneau L; Klein H; Parent L; Sauvé R
    Methods Enzymol; 2010; 485():437-57. PubMed ID: 21050931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+.
    Garneau L; Klein H; Banderali U; Longprá-Lauzon A; Parent L; Sauvá R
    J Biol Chem; 2009 Jan; 284(1):389-403. PubMed ID: 18996847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.
    Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R
    J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of ion permeation gating in Slo2.1 K+ channels.
    Garg P; Gardner A; Garg V; Sanguinetti MC
    J Gen Physiol; 2013 Nov; 142(5):523-42. PubMed ID: 24166878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of Slo2 K
    Giese MH; Gardner A; Hansen A; Sanguinetti MC
    J Physiol; 2017 Apr; 595(7):2321-2336. PubMed ID: 27682982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Determinants for the Selectivity of the Positive KCa3.1 Gating Modulator 5-Methylnaphtho[2,1-
    Brown BM; Shim H; Zhang M; Yarov-Yarovoy V; Wulff H
    Mol Pharmacol; 2017 Oct; 92(4):469-480. PubMed ID: 28760780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the PCMBS-dependent modification of KCa3.1 channel gating.
    Bailey MA; Grabe M; Devor DC
    J Gen Physiol; 2010 Oct; 136(4):367-87. PubMed ID: 20837673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels.
    Suzuki T; Hansen A; Sanguinetti MC
    Biochim Biophys Acta; 2016 Apr; 1858(4):783-92. PubMed ID: 26724206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels.
    Seebohm G; Westenskow P; Lang F; Sanguinetti MC
    J Physiol; 2005 Mar; 563(Pt 2):359-68. PubMed ID: 15649981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity.
    Caprini M; Fava M; Valente P; Fernandez-Ballester G; Rapisarda C; Ferroni S; Ferrer-Montiel A
    J Biol Chem; 2005 May; 280(18):18253-64. PubMed ID: 15749711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus.
    Wong R; Schlichter LC
    J Neurosci; 2014 Oct; 34(40):13371-83. PubMed ID: 25274816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channelopathy of small- and intermediate-conductance Ca
    Nam YW; Downey M; Rahman MA; Cui M; Zhang M
    Acta Pharmacol Sin; 2023 Feb; 44(2):259-267. PubMed ID: 35715699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers.
    Decher N; Chen J; Sanguinetti MC
    J Biol Chem; 2004 Apr; 279(14):13859-65. PubMed ID: 14726518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic interaction of S5 and S6 during voltage-controlled gating in a potassium channel.
    Espinosa F; Fleischhauer R; McMahon A; Joho RH
    J Gen Physiol; 2001 Aug; 118(2):157-70. PubMed ID: 11479343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1.
    Ji T; Corbalán-García S; Hubbard SR
    PLoS One; 2018; 13(6):e0199942. PubMed ID: 29953543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The concerted contribution of the S4-S5 linker and the S6 segment to the modulation of a Kv channel by 1-alkanols.
    Bhattacharji A; Kaplan B; Harris T; Qu X; Germann MW; Covarrubias M
    Mol Pharmacol; 2006 Nov; 70(5):1542-54. PubMed ID: 16887933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of amino-terminal half of the S4-S5 linker in type 1 ryanodine receptor (RyR1) channel gating.
    Murayama T; Kurebayashi N; Oba T; Oyamada H; Oguchi K; Sakurai T; Ogawa Y
    J Biol Chem; 2011 Oct; 286(41):35571-35577. PubMed ID: 21862589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.