BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 24470592)

  • 1. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms.
    Bhagwat N; Koppikar P; Keller M; Marubayashi S; Shank K; Rampal R; Qi J; Kleppe M; Patel HJ; Shah SK; Taldone T; Bradner JE; Chiosis G; Levine RL
    Blood; 2014 Mar; 123(13):2075-83. PubMed ID: 24470592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans.
    Marubayashi S; Koppikar P; Taldone T; Abdel-Wahab O; West N; Bhagwat N; Caldas-Lopes E; Ross KN; Gönen M; Gozman A; Ahn JH; Rodina A; Ouerfelli O; Yang G; Hedvat C; Bradner JE; Chiosis G; Levine RL
    J Clin Invest; 2010 Oct; 120(10):3578-93. PubMed ID: 20852385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity and resistance of JAK2 inhibitors to myeloproliferative neoplasms.
    Bhagwat N; Levine RL; Koppikar P
    Int J Hematol; 2013 Jun; 97(6):695-702. PubMed ID: 23670175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms.
    Meyer SC; Keller MD; Chiu S; Koppikar P; Guryanova OA; Rapaport F; Xu K; Manova K; Pankov D; O'Reilly RJ; Kleppe M; McKenney AS; Shih AH; Shank K; Ahn J; Papalexi E; Spitzer B; Socci N; Viale A; Mandon E; Ebel N; Andraos R; Rubert J; Dammassa E; Romanet V; Dölemeyer A; Zender M; Heinlein M; Rampal R; Weinberg RS; Hoffman R; Sellers WR; Hofmann F; Murakami M; Baffert F; Gaul C; Radimerski T; Levine RL
    Cancer Cell; 2015 Jul; 28(1):15-28. PubMed ID: 26175413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Jak2 inhibitor, G6, alleviates Jak2-V617F-mediated myeloproliferative neoplasia by providing significant therapeutic efficacy to the bone marrow.
    Kirabo A; Park SO; Majumder A; Gali M; Reinhard MK; Wamsley HL; Zhao ZJ; Cogle CR; Bisht KS; Keserü GM; Sayeski PP
    Neoplasia; 2011 Nov; 13(11):1058-68. PubMed ID: 22131881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms.
    Stivala S; Codilupi T; Brkic S; Baerenwaldt A; Ghosh N; Hao-Shen H; Dirnhofer S; Dettmer MS; Simillion C; Kaufmann BA; Chiu S; Keller M; Kleppe M; Hilpert M; Buser AS; Passweg JR; Radimerski T; Skoda RC; Levine RL; Meyer SC
    J Clin Invest; 2019 Mar; 129(4):1596-1611. PubMed ID: 30730307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response.
    Kleppe M; Kwak M; Koppikar P; Riester M; Keller M; Bastian L; Hricik T; Bhagwat N; McKenney AS; Papalexi E; Abdel-Wahab O; Rampal R; Marubayashi S; Chen JJ; Romanet V; Fridman JS; Bromberg J; Teruya-Feldstein J; Murakami M; Radimerski T; Michor F; Fan R; Levine RL
    Cancer Discov; 2015 Mar; 5(3):316-31. PubMed ID: 25572172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Resistance to JAK2 Inhibitors in Myeloproliferative Neoplasms.
    Meyer SC
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):627-642. PubMed ID: 28673392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloproliferative neoplasms: from JAK2 mutations discovery to JAK2 inhibitor therapies.
    Passamonti F; Maffioli M; Caramazza D; Cazzola M
    Oncotarget; 2011 Jun; 2(6):485-90. PubMed ID: 21646683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms.
    Bartalucci N; Tozzi L; Bogani C; Martinelli S; Rotunno G; Villeval JL; Vannucchi AM
    J Cell Mol Med; 2013 Nov; 17(11):1385-96. PubMed ID: 24237791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
    Koppikar P; Bhagwat N; Kilpivaara O; Manshouri T; Adli M; Hricik T; Liu F; Saunders LM; Mullally A; Abdel-Wahab O; Leung L; Weinstein A; Marubayashi S; Goel A; Gönen M; Estrov Z; Ebert BL; Chiosis G; Nimer SD; Bernstein BE; Verstovsek S; Levine RL
    Nature; 2012 Sep; 489(7414):155-9. PubMed ID: 22820254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors.
    Choong ML; Pecquet C; Pendharkar V; Diaconu CC; Yong JW; Tai SJ; Wang SF; Defour JP; Sangthongpitag K; Villeval JL; Vainchenker W; Constantinescu SN; Lee MA
    J Cell Mol Med; 2013 Nov; 17(11):1397-409. PubMed ID: 24251790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK inhibitors: pharmacology and clinical activity in chronic myeloprolipherative neoplasms.
    Treliński J; Robak T
    Curr Med Chem; 2013; 20(9):1147-61. PubMed ID: 23317159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease.
    Evrot E; Ebel N; Romanet V; Roelli C; Andraos R; Qian Z; Dölemeyer A; Dammassa E; Sterker D; Cozens R; Hofmann F; Murakami M; Baffert F; Radimerski T
    Clin Cancer Res; 2013 Nov; 19(22):6230-41. PubMed ID: 24081976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms.
    Hobbs GS; Rozelle S; Mullally A
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells.
    Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW
    Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of JAK1/2 inhibition on bone marrow stromal cells of myeloproliferative neoplasm (MPN) patients and healthy individuals.
    Zacharaki D; Ghazanfari R; Li H; Lim HC; Scheding S
    Eur J Haematol; 2018 Jul; 101(1):57-67. PubMed ID: 29645296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited efficacy of BMS-911543 in a murine model of Janus kinase 2 V617F myeloproliferative neoplasm.
    Pomicter AD; Eiring AM; Senina AV; Zabriskie MS; Marvin JE; Prchal JT; O'Hare T; Deininger MW
    Exp Hematol; 2015 Jul; 43(7):537-45.e1-11. PubMed ID: 25912019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis.
    Koppikar P; Abdel-Wahab O; Hedvat C; Marubayashi S; Patel J; Goel A; Kucine N; Gardner JR; Combs AP; Vaddi K; Haley PJ; Burn TC; Rupar M; Bromberg JF; Heaney ML; de Stanchina E; Fridman JS; Levine RL
    Blood; 2010 Apr; 115(14):2919-27. PubMed ID: 20154217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crizotinib Has Preclinical Efficacy in Philadelphia-Negative Myeloproliferative Neoplasms.
    Gurska LM; Okabe R; Schurer A; Tong MM; Soto M; Choi D; Ames K; Glushakow-Smith S; Montoya A; Tein E; Miles LA; Cheng H; Hankey-Giblin P; Levine RL; Goel S; Halmos B; Gritsman K
    Clin Cancer Res; 2023 Mar; 29(5):943-956. PubMed ID: 36537918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.