These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24471096)

  • 21. Simultaneous detection of TNOS and P35S in transgenic soybean based on magnetic bicolor fluorescent probes.
    Li Y; Hao N; Luo S; Liu Q; Sun L; Qian J; Cai J; Wang K
    Talanta; 2020 May; 212():120764. PubMed ID: 32113537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Validation of a P-35S, T-nos, T-35S and P-FMV Tetraplex Real-time PCR Screening Method to Detect Regulatory Genes of Genetically Modified Organisms in Food.
    Eugster A; Murmann P; Kaenzig A; Breitenmoser A
    Chimia (Aarau); 2014 Oct; 68(10):701-4. PubMed ID: 25437161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Contamination with genetically modified maize MON863 of processed foods on the market].
    Ohgiya Y; Sakai M; Miyashita T; Yano K
    Shokuhin Eiseigaku Zasshi; 2009 Jun; 50(3):140-5. PubMed ID: 19602862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.
    Matsuoka T; Kuribara H; Akiyama H; Miura H; Goda Y; Kusakabe Y; Isshiki K; Toyoda M; Hino A
    Shokuhin Eiseigaku Zasshi; 2001 Feb; 42(1):24-32. PubMed ID: 11383153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a general method for detection and quantification of the P35S promoter based on assessment of existing methods.
    Wu Y; Wang Y; Li J; Li W; Zhang L; Li Y; Li X; Li J; Zhu L; Wu G
    Sci Rep; 2014 Dec; 4():7358. PubMed ID: 25483893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach.
    Zahradnik C; Kolm C; Martzy R; Mach RL; Krska R; Farnleitner AH; Brunner K
    Anal Bioanal Chem; 2014 Nov; 406(27):6835-42. PubMed ID: 24880871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unconventional P-35S sequence identified in genetically modified maize.
    Al-Hmoud N; Al-Husseini N; Ibrahim-Alobaide MA; Kübler E; Farfoura M; Alobydi H; Al-Rousan H
    GM Crops Food; 2014; 5(1):58-64. PubMed ID: 24495911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.
    Takabatake R; Koiwa T; Kasahara M; Takashima K; Futo S; Minegishi Y; Akiyama H; Teshima R; Oguchi T; Mano J; Furui S; Kitta K
    Shokuhin Eiseigaku Zasshi; 2011; 52(4):265-9. PubMed ID: 21873818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.
    Niu C; Xu Y; Zhang C; Zhu P; Huang K; Luo Y; Xu W
    Anal Chem; 2018 May; 90(9):5586-5593. PubMed ID: 29652133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interlaboratory transfer of a PCR multiplex method for simultaneous detection of four genetically modified maize lines: Bt11, MON810, T25, and GA21.
    Hernández M; Rodríguez-Lázaro D; Zhang D; Esteve T; Pla M; Prat S
    J Agric Food Chem; 2005 May; 53(9):3333-7. PubMed ID: 15853368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A self-probing primer PCR method for detection of very short DNA fragments.
    Zhang L; Wu YH; Li J; Li W; Liu B; Wu G
    Anal Biochem; 2016 Dec; 514():55-63. PubMed ID: 27601283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of a reference plasmid molecule containing eight targets for the detection of genetically modified crops.
    Wang X; Teng D; Yang Y; Tian F; Guan Q; Wang J
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):721-31. PubMed ID: 21336925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitation of 35S promoter in maize DNA extracts from genetically modified organisms using real-time polymerase chain reaction, part 2: interlaboratory study.
    Feinberg M; Fernandez S; Cassard S; Bertheau Y
    J AOAC Int; 2005; 88(2):558-73. PubMed ID: 15859084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of the 35S promoter in DNA extracts from genetically modified organisms using real-time polymerase chain reaction and specificity assessment on various genetically modified organisms, part I: operating procedure.
    Fernandez S; Charles-Delobel C; Geldreich A; Berthier G; Boyer F; Collonnier C; Coué-Philippe G; Diolez A; Duplan MN; Kebdani N; Romaniuk M; Feinberg M; Bertheau Y
    J AOAC Int; 2005; 88(2):547-57. PubMed ID: 15859083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis.
    James D; Schmidt AM; Wall E; Green M; Masri S
    J Agric Food Chem; 2003 Sep; 51(20):5829-34. PubMed ID: 13129280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput double quantitative competitive polymerase chain reaction for determination of genetically modified organisms.
    Mavropoulou AK; Koraki T; Ioannou PC; Christopoulos TK
    Anal Chem; 2005 Aug; 77(15):4785-91. PubMed ID: 16053289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize.
    Onishi M; Matsuoka T; Kodama T; Kashiwaba K; Futo S; Akiyama H; Maitani T; Furui S; Oguchi T; Hino A
    J Agric Food Chem; 2005 Dec; 53(25):9713-21. PubMed ID: 16332120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An event-specific DNA microarray to identify genetically modified organisms in processed foods.
    Kim JH; Kim SY; Lee H; Kim YR; Kim HY
    J Agric Food Chem; 2010 May; 58(10):6018-26. PubMed ID: 20438128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.
    Cankar K; Ravnikar M; Zel J; Gruden K; Toplak N
    J AOAC Int; 2005; 88(3):814-22. PubMed ID: 16001857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prevalence of genetically modified rice, maize, and soy in Saudi food products.
    Elsanhoty RM; Al-Turki AI; Ramadan MF
    Appl Biochem Biotechnol; 2013 Oct; 171(4):883-99. PubMed ID: 23904260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.