These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24471364)

  • 1. Lower leg injury in relation to vehicle front end.
    Zanetti EM; Franceschini G; Audenino AL
    Traffic Inj Prev; 2014; 15(4):395-401. PubMed ID: 24471364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of vehicle bumper height and impact velocity on type of lower extremity injury in vehicle-pedestrian accidents.
    Matsui Y
    Accid Anal Prev; 2005 Jul; 37(4):633-40. PubMed ID: 15949454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the influence of passenger vehicles front-end design on pedestrian lower extremity injuries by means of the LLMS model.
    Scattina A; Mo F; Masson C; Avalle M; Arnoux PJ
    Traffic Inj Prev; 2018 Jul; 19(5):535-541. PubMed ID: 29381438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severity of vehicle bumper location in vehicle-to-pedestrian impact accidents.
    Matsui Y; Hitosugi M; Mizuno K
    Forensic Sci Int; 2011 Oct; 212(1-3):205-9. PubMed ID: 21723057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of leg fracture level and vehicle front-end geometry on pedestrian knee injury and response.
    Dunmore MC; Brooks R; Madeley NJ; McNally DS
    Proc Inst Mech Eng H; 2006 Nov; 220(8):857-69. PubMed ID: 17236519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of passenger car front shape on pedestrian injury risk observed from German in-depth accident data.
    Li G; Lyons M; Wang B; Yang J; Otte D; Simms C
    Accid Anal Prev; 2017 Apr; 101():11-21. PubMed ID: 28167420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of vehicle impact velocity and front-end structure on dynamic responses of child pedestrians.
    Liu X; Yang J
    Traffic Inj Prev; 2003 Dec; 4(4):337-44. PubMed ID: 14630582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of pedestrian subsystem test method using legform and upper legform impactors for assessment of high-bumper vehicle aggressiveness.
    Matsui Y
    Traffic Inj Prev; 2004 Mar; 5(1):76-86. PubMed ID: 14754678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety assessment characteristics of pedestrian legform impactors in vehicle-front impact tests.
    Matsui Y
    Accid Anal Prev; 2014 Dec; 73():65-72. PubMed ID: 25178069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of knee injury risks in car-to-pedestrian impacts.
    Nagasaka K; Mizuno K; Tanaka E; Yamamoto S; Iwamoto M; Miki K; Kajzer J
    Traffic Inj Prev; 2003 Dec; 4(4):345-54. PubMed ID: 14630583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
    Bose D; Bhalla KS; Untaroiu CD; Ivarsson BJ; Crandall JR; Hurwitz S
    J Biomech Eng; 2008 Jun; 130(3):031008. PubMed ID: 18532857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Have pedestrian subsystem tests improved passenger car front shape?
    Li G; Wang F; Otte D; Cai Z; Simms C
    Accid Anal Prev; 2018 Jun; 115():143-150. PubMed ID: 29571012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety.
    Mo F; Masson C; Cesari D; Arnoux PJ
    Traffic Inj Prev; 2013; 14(4):378-86. PubMed ID: 23531261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bumper and grille airbags concept for enhanced vehicle compatibility in side impact: phase II.
    Barbat S; Li X; Prasad P
    Traffic Inj Prev; 2013; 14 Suppl():S30-9. PubMed ID: 23905559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts.
    Nie B; Zhou Q
    Traffic Inj Prev; 2016 Oct; 17(7):712-9. PubMed ID: 26890318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk.
    Han Y; Yang J; Mizuno K; Matsui Y
    Traffic Inj Prev; 2012 Sep; 13(5):507-18. PubMed ID: 22931181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of car impact to pedestrian lower extremity: influence of different car-front shapes and dummy parameters on test results.
    Ishikawa H; Kajzer J; Ono K; Sakurai M
    Accid Anal Prev; 1994 Apr; 26(2):231-42. PubMed ID: 8198692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.
    Petit P; Trosseille X; Dufaure N; Dubois D; Potier P; Vallancien G
    Stapp Car Crash J; 2014 Nov; 58():197-211. PubMed ID: 26192955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of lower extremity postures on kinematics and injuries of cyclists in vehicle side collisions.
    Mizuno K; Yamada H; Mizuguchi H; Ito D; Han Y; Hitosugi M
    Traffic Inj Prev; 2016 Aug; 17(6):618-24. PubMed ID: 26760737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The significance of the results of crash-tests with the use of the models of the pedestrians' lower extremities for the prevention of the traffic road accidents].
    Smirenin SA; Fetisov VA; Grigoryan VG; Gusarov AA; Kucheryavets YO
    Sud Med Ekspert; 2017; 60(3):13-18. PubMed ID: 28656947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.