BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24471504)

  • 1. X-ray-induced nanoparticle-based photodynamic therapy of cancer.
    Zou X; Yao M; Ma L; Hossu M; Han X; Juzenas P; Chen W
    Nanomedicine (Lond); 2014 Oct; 9(15):2339-51. PubMed ID: 24471504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of LaF
    Tavakkoli F; Zahedifar M; Sadeghi E
    Photodiagnosis Photodyn Ther; 2018 Mar; 21():306-311. PubMed ID: 29331661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy.
    Dinakaran D; Sengupta J; Pink D; Raturi A; Chen H; Usmani N; Kumar P; Lewis JD; Narain R; Moore RB
    Acta Biomater; 2020 Nov; 117():335-348. PubMed ID: 32956872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles.
    Tang Y; Hu J; Elmenoufy AH; Yang X
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12261-9. PubMed ID: 25974980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy.
    Sengar P; Juárez P; Verdugo-Meza A; Arellano DL; Jain A; Chauhan K; Hirata GA; Fournier PGJ
    J Nanobiotechnology; 2018 Feb; 16(1):19. PubMed ID: 29482561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Access to a novel near-infrared photodynamic therapy through the combined use of 5-aminolevulinic acid and lanthanide nanoparticles.
    Shimoyama A; Watase H; Liu Y; Ogura S; Hagiya Y; Takahashi K; Inoue K; Tanaka T; Murayama Y; Otsuji E; Ohkubo A; Yuasa H
    Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):607-14. PubMed ID: 24284118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system.
    Lee SJ; Koo H; Lee DE; Min S; Lee S; Chen X; Choi Y; Leary JF; Park K; Jeong SY; Kwon IC; Kim K; Choi K
    Biomaterials; 2011 Jun; 32(16):4021-9. PubMed ID: 21376388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.
    Cooper DR; Kudinov K; Tyagi P; Hill CK; Bradforth SE; Nadeau JL
    Phys Chem Chem Phys; 2014 Jun; 16(24):12441-53. PubMed ID: 24827162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a novel nanoparticle to use X-ray fluorescence of TiO
    Noghreiyan AV; Soleymanifard S; Sazgarnia A
    Photodiagnosis Photodyn Ther; 2024 Feb; 45():103890. PubMed ID: 37981223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the emission spectra and cytotoxicity of TiO
    Vejdani Noghreiyan A; Sazegar MR; Mousavi Shaegh SA; Sazgarnia A
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101770. PubMed ID: 32311544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconjugations of polyethylenimine-capped LaF3:Ce, Tb nanoparticles with bovine serum albumin and photoluminescent properties.
    Zhang W; Hua R; Shao W; Zhao J; Na L
    J Nanosci Nanotechnol; 2014 May; 14(5):3690-5. PubMed ID: 24734615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hydrothermal preparation and luminescence of LaF3:Ce, Tb nano-sized phosphor].
    Zhang MF; Meng JX; Liu YL; Man SQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):232-5. PubMed ID: 17514943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Genetically Encoded Photosensitizers with Scintillating Nanoparticles for X-ray Activated Photodynamic Therapy.
    Micheletto MC; Guidelli ÉJ; Costa-Filho AJ
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2289-2302. PubMed ID: 33405500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled photosensitizer-conjugated nanoparticles for targeted photodynamic therapy.
    Zhao L; Kim TH; Huh KM; Kim HW; Kim SY
    J Biomater Appl; 2013 Sep; 28(3):434-47. PubMed ID: 22983021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells.
    da Silva AR; Inada NM; Rettori D; Baratti MO; Vercesi AE; Jorge RA
    J Photochem Photobiol B; 2009 Feb; 94(2):101-12. PubMed ID: 19070504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refluxing synthesis, photoluminescence and binding ability to deoxyribonucleic acid of water-soluble rare earth ion-doped LaF3 nanoparticles.
    Wang Z; Zhang Y; Li C; Zhang X; Chang J; Xie J; Li C
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4506-12. PubMed ID: 24738421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive Photodynamic Therapy in Brain Cancer by Use of Tb
    Chen MH; Jenh YJ; Wu SK; Chen YS; Hanagata N; Lin FH
    Nanoscale Res Lett; 2017 Dec; 12(1):62. PubMed ID: 28110445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Pr
    Mandl GA; Vettier F; Tessitore G; Maurizio SL; Bietar K; Stochaj U; Capobianco JA
    ACS Appl Bio Mater; 2023 Jun; 6(6):2370-2383. PubMed ID: 37267436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-free synthesis, luminescent properties, and drug-release properties of LaF3 and LaCO3F hollow microspheres.
    Lv R; Gai S; Dai Y; He F; Niu N; Yang P
    Inorg Chem; 2014 Jan; 53(2):998-1008. PubMed ID: 24364762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles.
    Elmenoufy AH; Tang Y; Hu J; Xu H; Yang X
    Chem Commun (Camb); 2015 Aug; 51(61):12247-50. PubMed ID: 26136105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.