BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24471518)

  • 1. A recent local sweep at the PHYA locus in the Northern European Spiterstulen population of Arabidopsis lyrata.
    Toivainen T; Pyhäjärvi T; Niittyvuopio A; Savolainen O
    Mol Ecol; 2014 Mar; 23(5):1040-52. PubMed ID: 24471518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.
    Mattila TM; Aalto EA; Toivainen T; Niittyvuopio A; Piltonen S; Kuittinen H; Savolainen O
    Mol Ecol; 2016 Jan; 25(2):581-97. PubMed ID: 26600237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population structure and historical biogeography of European Arabidopsis lyrata.
    Ansell SW; Stenøien HK; Grundmann M; Schneider H; Hemp A; Bauer N; Russell SJ; Vogel JC
    Heredity (Edinb); 2010 Dec; 105(6):543-53. PubMed ID: 20160758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time scales of divergence and speciation among natural populations and subspecies of Arabidopsis lyrata (Brassicaceae).
    Pyhäjärvi T; Aalto E; Savolainen O
    Am J Bot; 2012 Aug; 99(8):1314-22. PubMed ID: 22822172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic basis of local adaptation and flowering time variation in Arabidopsis lyrata.
    Leinonen PH; Remington DL; Leppälä J; Savolainen O
    Mol Ecol; 2013 Feb; 22(3):709-23. PubMed ID: 22724431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional neutrality at two adjacent NBS-LRR disease resistance loci in natural populations of Arabidopsis lyrata.
    Gos G; Wright SI
    Mol Ecol; 2008 Dec; 17(23):4953-62. PubMed ID: 18992006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genes underlying quantitative variation in ecologically important traits: PIF4 (phytochrome interacting factor 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana.
    Brock MT; Maloof JN; Weinig C
    Mol Ecol; 2010 Mar; 19(6):1187-99. PubMed ID: 20456226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata.
    Wright SI; Foxe JP; DeRose-Wilson L; Kawabe A; Looseley M; Gaut BS; Charlesworth D
    Genetics; 2006 Nov; 174(3):1421-30. PubMed ID: 16951057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Analysis of Colonization History and Concomitant Selection in Arabidopsis lyrata.
    Mattila TM; Tyrmi J; Pyhäjärvi T; Savolainen O
    Mol Biol Evol; 2017 Oct; 34(10):2665-2677. PubMed ID: 28957505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balancing selection and low recombination affect diversity near the self-incompatibility loci of the plant Arabidopsis lyrata.
    Kamau E; Charlesworth D
    Curr Biol; 2005 Oct; 15(19):1773-8. PubMed ID: 16213826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdivision and haplotype structure in natural populations of Arabidopsis lyrata.
    Wright SI; Lauga B; Charlesworth D
    Mol Ecol; 2003 May; 12(5):1247-63. PubMed ID: 12694288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly structured nucleotide variation within and among Arabidopsis lyrata populations at the FAH1 and DFR gene regions.
    Balañá-Alcaide D; Ramos-Onsins SE; Boone Q; Aguadé M
    Mol Ecol; 2006 Jul; 15(8):2059-68. PubMed ID: 16780424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of phytochrome autophosphorylation in plant light signaling.
    Han YJ; Kim HS; Kim YM; Shin AY; Lee SS; Bhoo SH; Song PS; Kim JI
    Plant Cell Physiol; 2010 Apr; 51(4):596-609. PubMed ID: 20203237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local adaptation, phenotypic differentiation, and hybrid fitness in diverged natural populations of Arabidopsis lyrata.
    Leinonen PH; Remington DL; Savolainen O
    Evolution; 2011 Jan; 65(1):90-107. PubMed ID: 20812972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic relationships of B-related phytochromes in the Brassicaceae: Redundancy and the persistence of phytochrome D.
    Mathews S; McBreen K
    Mol Phylogenet Evol; 2008 Nov; 49(2):411-23. PubMed ID: 18768161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely low genetic variability and highly structured local populations of Arabidopsis thaliana at higher latitudes.
    Lewandowska-Sabat AM; Fjellheim S; Rognli OA
    Mol Ecol; 2010 Nov; 19(21):4753-64. PubMed ID: 20887360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual signatures of highly adaptable R-loci in closely-related Arabidopsis species.
    Wang J; Zhang L; Li J; Lawton-Rauh A; Tian D
    Gene; 2011 Aug; 482(1-2):24-33. PubMed ID: 21664259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae).
    Leinonen PH; Sandring S; Quilot B; Clauss MJ; Mitchell-Olds T; Agren J; Savolainen O
    Am J Bot; 2009 Jun; 96(6):1129-37. PubMed ID: 21628263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific methylation in gene coding region underlies transcriptional silencing of the Phytochrome A epiallele in Arabidopsis thaliana.
    Rangani G; Khodakovskaya M; Alimohammadi M; Hoecker U; Srivastava V
    Plant Mol Biol; 2012 May; 79(1-2):191-202. PubMed ID: 22466452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus.
    Jang IC; Chung PJ; Hemmes H; Jung C; Chua NH
    Plant Cell; 2011 Feb; 23(2):459-70. PubMed ID: 21317377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.