These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24471802)

  • 1. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles.
    Yin Y; Yu S; Liu J; Jiang G
    Environ Sci Technol; 2014; 48(5):2671-9. PubMed ID: 24471802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter.
    Yin Y; Liu J; Jiang G
    ACS Nano; 2012 Sep; 6(9):7910-9. PubMed ID: 22816495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag
    Yin Y; Han D; Tai C; Tan Z; Zhou X; Yu S; Liu J; Jiang G
    Environ Pollut; 2017 Jun; 225():66-73. PubMed ID: 28351007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.
    Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G
    J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles.
    Hou WC; Stuart B; Howes R; Zepp RG
    Environ Sci Technol; 2013 Jul; 47(14):7713-21. PubMed ID: 23731169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment.
    Sharma VK; Filip J; Zboril R; Varma RS
    Chem Soc Rev; 2015 Dec; 44(23):8410-23. PubMed ID: 26435358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of Ag(0) Single Atoms at Water/Mineral Interfaces during Sunlight-Induced Reduction of Ionic Ag by Phenolic DOM.
    Li H; Qiao D; Chu M; Guo L; Sun Z; Fan Y; Ni SQ; Tung CH; Wang Y
    Environ Sci Technol; 2023 Dec; 57(49):20822-20829. PubMed ID: 38014909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular Saccharide-Mediated Reduction of Au
    Kang F; Qu X; Alvarez PJ; Zhu D
    Environ Sci Technol; 2017 Mar; 51(5):2776-2785. PubMed ID: 28151654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of petroleum hydrocarbon pyrene on the formation, stability and antibacterial activity of natural Au nanoparticles.
    Li Z; Wan J; Zhang Y; Dang C; Pan F; Fu J
    Sci Total Environ; 2021 Nov; 795():148813. PubMed ID: 34246134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of Ag-Au Bimetallic Nanocrystals in Aquatic Environments Mediated by Dissolved Organic Matter: A Mechanistic Perspective.
    Alivio TEG; Fleer NA; Singh J; Nadadur G; Feng M; Banerjee S; Sharma VK
    Environ Sci Technol; 2018 Jul; 52(13):7269-7278. PubMed ID: 29864275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle.
    Yin Y; Shen M; Zhou X; Yu S; Chao J; Liu J; Jiang G
    Environ Sci Technol; 2014 Aug; 48(16):9366-73. PubMed ID: 25050868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitized degradation of 2,4',5-trichlorobiphenyl (PCB 31) by dissolved organic matter.
    Chen L; Tang X; Shen C; Chen C; Chen Y
    J Hazard Mater; 2012 Jan; 201-202():1-6. PubMed ID: 22169245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the Role of Dissolved Organic Matter and Sunlight in Mediating the Formation of Ag-Au Bimetallic Alloy Nanoparticles in the Aquatic Environment.
    Guo B; Alivio TEG; Fleer NA; Feng M; Li Y; Banerjee S; Sharma VK
    Environ Sci Technol; 2021 Feb; 55(3):1710-1720. PubMed ID: 33426890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very Green Photosynthesis of Gold Nanoparticles by a Living Aquatic Plant: Photoreduction of Au
    Mukhoro OC; Roos WD; Jaffer M; Bolton JJ; Stillman MJ; Beukes DR; Antunes E
    Chemistry; 2018 Feb; 24(7):1657-1666. PubMed ID: 29164714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of Ag
    Nie X; Zhu K; Zhao S; Dai Y; Tian H; Sharma VK; Jia H
    Chemosphere; 2020 Mar; 243():125413. PubMed ID: 31765900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna.
    Zhang Z; Yang X; Shen M; Yin Y; Liu J
    J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold.
    Zhang Y; Shareena Dasari TP; Deng H; Yu H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2015; 33(3):286-327. PubMed ID: 26072980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of humic acids and sunlight on the cytotoxicity of engineered zinc oxide and titanium dioxide nanoparticles to a river bacterial assemblage.
    Dasari TP; Hwang HM
    J Environ Sci (China); 2013 Sep; 25(9):1925-35. PubMed ID: 24520737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles.
    Lin CY; Yu CJ; Lin YH; Tseng WL
    Anal Chem; 2010 Aug; 82(16):6830-7. PubMed ID: 20704372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.