These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 24471819)

  • 21. Vertically Aligned CdO-Decked α-Fe
    Alhabradi M; Nundy S; Ghosh A; Tahir AA
    ACS Omega; 2022 Aug; 7(32):28396-28407. PubMed ID: 35990474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PRED treatment mediated stable and efficient water oxidation performance of the Fe2O3 nano-coral structure.
    Shinde PS; Lee HH; Lee SY; Lee YM; Jang JS
    Nanoscale; 2015 Sep; 7(36):14906-13. PubMed ID: 26300305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gradient doping of phosphorus in Fe
    Luo Z; Li C; Liu S; Wang T; Gong J
    Chem Sci; 2017 Jan; 8(1):91-100. PubMed ID: 28451152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting.
    Marelli M; Naldoni A; Minguzzi A; Allieta M; Virgili T; Scavia G; Recchia S; Psaro R; Dal Santo V
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11997-2004. PubMed ID: 25007400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface Reconstruction of Cobalt Species on Amorphous Cobalt Silicate-Coated Fluorine-Doped Hematite for Efficient Photoelectrochemical Water Oxidation.
    Chai H; Wang P; Wang T; Gao L; Li F; Jin J
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47572-47580. PubMed ID: 34607433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite.
    Riha SC; Klahr BM; Tyo EC; Seifert S; Vajda S; Pellin MJ; Hamann TW; Martinson AB
    ACS Nano; 2013 Mar; 7(3):2396-405. PubMed ID: 23398051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational construction of S-doped FeOOH onto Fe
    Duc Quang N; Cao Van P; Majumder S; Jeong JR; Kim D; Kim C
    J Colloid Interface Sci; 2022 Jun; 616():749-758. PubMed ID: 35247813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
    Cho ES; Kang MJ; Kang YS
    Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.
    Zandi O; Hamann TW
    J Phys Chem Lett; 2014 May; 5(9):1522-6. PubMed ID: 26270090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.
    Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M
    J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting.
    Chernomordik BD; Russell HB; Cvelbar U; Jasinski JB; Kumar V; Deutsch T; Sunkara MK
    Nanotechnology; 2012 May; 23(19):194009. PubMed ID: 22539110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of CuFe
    Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.