BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24471920)

  • 1. Co-dependent recruitment of Ino80p and Snf2p is required for yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Cell Biol; 2014 Feb; 92(1):69-75. PubMed ID: 24471920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin repositioning activity and transcription machinery are both recruited by Ace1p in yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Biophys Res Commun; 2012 Jun; 422(4):658-63. PubMed ID: 22609398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of unacetylatable Snf2p at the INO1 promoter is detrimental to remodeler recycling supply for CUP1 induction.
    Esposito M; Sherr GL; Esposito A; Kaluski G; Ellington F; Shen CH
    PLoS One; 2020; 15(3):e0230572. PubMed ID: 32210477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INO1 induction requires chromatin remodelers Ino80p and Snf2p but not the histone acetylases.
    Konarzewska P; Esposito M; Shen CH
    Biochem Biophys Res Commun; 2012 Feb; 418(3):483-8. PubMed ID: 22281492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted histone acetylation at the yeast CUP1 promoter requires the transcriptional activator, the TATA boxes, and the putative histone acetylase encoded by SPT10.
    Shen CH; Leblanc BP; Neal C; Akhavan R; Clark DJ
    Mol Cell Biol; 2002 Sep; 22(18):6406-16. PubMed ID: 12192040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation.
    Ford J; Odeyale O; Shen CH
    Biochem Biophys Res Commun; 2008 Sep; 373(4):602-6. PubMed ID: 18593569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone H2A and Spt10 cooperate to regulate induction and autoregulation of the CUP1 metallothionein.
    Kuo HC; Moore JD; Krebs JE
    J Biol Chem; 2005 Jan; 280(1):104-11. PubMed ID: 15501826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological characterization of the yeast metallothionein (CUP1) promoter, and consequences of overexpressing its transcriptional activator, ACE1.
    Hottiger T; Fürst P; Pohlig G; Heim J
    Yeast; 1994 Mar; 10(3):283-96. PubMed ID: 8017099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast.
    Mehta GD; Ball DA; Eriksson PR; Chereji RV; Clark DJ; McNally JG; Karpova TS
    Mol Cell; 2018 Dec; 72(5):875-887.e9. PubMed ID: 30318444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-Terminal Tail of Histone H3 Regulates Copper Homeostasis in Saccharomyces cerevisiae.
    Singh S; Sahu RK; Tomar RS
    Mol Cell Biol; 2021 Jan; 41(2):. PubMed ID: 33257505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction for the expression of yeast metallothionein gene, CUP1, by cobalt.
    Tohoyama H; Kadota H; Shiraishi E; Inouhe M; Joho M
    Microbios; 2001; 104(408):99-104. PubMed ID: 11297016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CUP1 upstream repeated element renders CUP1 promoter activation insensitive to mutations in the RNA polymerase II transcription complex.
    Badi L; Barberis A
    Nucleic Acids Res; 2002 Mar; 30(6):1306-15. PubMed ID: 11884627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae.
    Peña MM; Koch KA; Thiele DJ
    Mol Cell Biol; 1998 May; 18(5):2514-23. PubMed ID: 9599102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
    Govind CK; Yoon S; Qiu H; Govind S; Hinnebusch AG
    Mol Cell Biol; 2005 Jul; 25(13):5626-38. PubMed ID: 15964818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter.
    Ford J; Odeyale O; Eskandar A; Kouba N; Shen CH
    Biochem Biophys Res Commun; 2007 Oct; 361(4):974-9. PubMed ID: 17681272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae.
    Jensen LT; Howard WR; Strain JJ; Winge DR; Culotta VC
    J Biol Chem; 1996 Aug; 271(31):18514-9. PubMed ID: 8702498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis.
    Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J
    Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.
    Musladin S; Krietenstein N; Korber P; Barbaric S
    Nucleic Acids Res; 2014 Apr; 42(7):4270-82. PubMed ID: 24465003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.