These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 24471933)
1. A penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation. Chen LS; Prentice RL; Wang P Biometrics; 2014 Jun; 70(2):312-22. PubMed ID: 24471933 [TBL] [Abstract][Full Text] [Related]
3. [The use of the expectation-maximization (EM) algorithm for maximum likelihood estimation of gametic frequencies of multilocus polymorphic codominant systems based on sampled population data]. Sergeev AS; Arapova RK Genetika; 2002 Mar; 38(3):407-18. PubMed ID: 11963570 [TBL] [Abstract][Full Text] [Related]
4. Quantile modeling through multivariate log-normal/independent linear regression models with application to newborn data. Morán-Vásquez RA; Mazo-Lopera MA; Ferrari SLP Biom J; 2021 Aug; 63(6):1290-1308. PubMed ID: 33949715 [TBL] [Abstract][Full Text] [Related]
5. Joint modeling of survival time and longitudinal outcomes with flexible random effects. Choi J; Zeng D; Olshan AF; Cai J Lifetime Data Anal; 2018 Jan; 24(1):126-152. PubMed ID: 28856493 [TBL] [Abstract][Full Text] [Related]
6. A batch rival penalized expectation-maximization algorithm for Gaussian mixture clustering with automatic model selection. Wen J; Zhang D; Cheung YM; Liu H; You X Comput Math Methods Med; 2012; 2012():425730. PubMed ID: 22400050 [TBL] [Abstract][Full Text] [Related]
7. Antedependence models for nonstationary categorical longitudinal data with ignorable missingness: likelihood-based inference. Xie Y; Zimmerman DL Stat Med; 2013 Aug; 32(19):3274-89. PubMed ID: 23436682 [TBL] [Abstract][Full Text] [Related]
8. Performance in population models for count data, part II: a new SAEM algorithm. Savic R; Lavielle M J Pharmacokinet Pharmacodyn; 2009 Aug; 36(4):367-79. PubMed ID: 19680795 [TBL] [Abstract][Full Text] [Related]
9. Variable selection for joint models of multivariate skew-normal longitudinal and survival data. Tang J; Tang AM; Tang N Stat Methods Med Res; 2023 Sep; 32(9):1694-1710. PubMed ID: 37408456 [TBL] [Abstract][Full Text] [Related]
10. Standard errors for EM estimates in generalized linear models with random effects. Friedl H; Kauermann G Biometrics; 2000 Sep; 56(3):761-7. PubMed ID: 10985213 [TBL] [Abstract][Full Text] [Related]
11. A latent-class mixture model for incomplete longitudinal Gaussian data. Beunckens C; Molenberghs G; Verbeke G; Mallinckrodt C Biometrics; 2008 Mar; 64(1):96-105. PubMed ID: 17608789 [TBL] [Abstract][Full Text] [Related]
12. A general class of recapture models based on the conditional capture probabilities. Farcomeni A Biometrics; 2016 Mar; 72(1):116-24. PubMed ID: 26355633 [TBL] [Abstract][Full Text] [Related]
13. Maximum likelihood inference for multivariate frailty models using an automated Monte Carlo EM algorithm. Ripatti S; Larsen K; Palmgren J Lifetime Data Anal; 2002 Dec; 8(4):349-60. PubMed ID: 12471944 [TBL] [Abstract][Full Text] [Related]
14. Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies. Lin TI; Wang WL Biom J; 2022 Oct; 64(7):1325-1339. PubMed ID: 35723051 [TBL] [Abstract][Full Text] [Related]
15. Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates. Chen B; Zhou XH Biometrics; 2011 Sep; 67(3):830-42. PubMed ID: 21281272 [TBL] [Abstract][Full Text] [Related]
16. Flexible modeling of multiple nonlinear longitudinal trajectories with censored and non-ignorable missing outcomes. Lin TI; Wang WL Stat Methods Med Res; 2023 Mar; 32(3):593-608. PubMed ID: 36624626 [TBL] [Abstract][Full Text] [Related]
17. Regularized parameter estimation in high-dimensional gaussian mixture models. Ruan L; Yuan M; Zou H Neural Comput; 2011 Jun; 23(6):1605-22. PubMed ID: 21395439 [TBL] [Abstract][Full Text] [Related]
18. Maximum-entropy expectation-maximization algorithm for image reconstruction and sensor field estimation. Hong H; Schonfeld D IEEE Trans Image Process; 2008 Jun; 17(6):897-907. PubMed ID: 18482885 [TBL] [Abstract][Full Text] [Related]
19. Using multivariate mixed-effects selection models for analyzing batch-processed proteomics data with non-ignorable missingness. Wang J; Wang P; Hedeker D; Chen LS Biostatistics; 2019 Oct; 20(4):648-665. PubMed ID: 29939200 [TBL] [Abstract][Full Text] [Related]
20. Multilevel latent class models with dirichlet mixing distribution. Di CZ; Bandeen-Roche K Biometrics; 2011 Mar; 67(1):86-96. PubMed ID: 20560936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]