These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24472285)

  • 1. Effect of uneven red cell influx on formation of cell-free layer in small venules.
    Namgung B; Kim S
    Microvasc Res; 2014 Mar; 92():19-24. PubMed ID: 24472285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.
    Ng YC; Namgung B; Tien SL; Leo HL; Kim S
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H487-97. PubMed ID: 27233764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte aggregation may promote uneven spatial distribution of NO/O2 in the downstream vessel of arteriolar bifurcations.
    Ng YC; Namgung B; Leo HL; Kim S
    J Biomech; 2016 Jul; 49(11):2241-2248. PubMed ID: 26684432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of erythrocyte aggregation on spatiotemporal variations in cell-free layer formation near on arteriolar bifurcation.
    Ong PK; Kim S
    Microcirculation; 2013 Jul; 20(5):440-53. PubMed ID: 23360227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles.
    Ong PK; Jain S; Kim S
    Microvasc Res; 2012 Mar; 83(2):118-25. PubMed ID: 22100561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation.
    Ye SS; Ju M; Kim S
    Microvasc Res; 2016 Jul; 106():14-23. PubMed ID: 26969106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of erythrocyte aggregation at pathological levels on NO/O2 transport in small arterioles.
    Cho S; Namgung B; Kim HS; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2015; 59(2):163-75. PubMed ID: 24732346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model.
    Das B; Bishop JJ; Kim S; Meiselman HJ; Johnson PC; Popel AS
    Clin Hemorheol Microcirc; 2007; 36(3):217-33. PubMed ID: 17361024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics of aggregating red blood cells in postcapillary venules.
    Chung B; Kim S; Johnson PC; Popel AS
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):385-97. PubMed ID: 19675976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of erythrocyte aggregation at pathological levels on cell-free marginal layer in a narrow circular tube.
    Namgung B; Sakai H; Kim S
    Clin Hemorheol Microcirc; 2015; 61(3):445-57. PubMed ID: 25335815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal variations of the cell-free layer width may enhance NO bioavailability in small arterioles: Effects of erythrocyte aggregation.
    Ong PK; Jain S; Kim S
    Microvasc Res; 2011 May; 81(3):303-12. PubMed ID: 21345341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional transient model for prediction of arteriolar NO/O2 modulation by spatiotemporal variations in cell-free layer width.
    Ng YC; Namgung B; Kim S
    Microvasc Res; 2015 Jan; 97():88-97. PubMed ID: 25312045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-free layer formation in small arterioles at pathological levels of erythrocyte aggregation.
    Ong PK; Jain S; Namgung B; Woo YI; Kim S
    Microcirculation; 2011 Oct; 18(7):541-51. PubMed ID: 21575094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.
    Ong PK; Namgung B; Johnson PC; Kim S
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1870-8. PubMed ID: 20348228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of collision rate and collision efficiency to erythrocyte aggregation in postcapillary venules at low flow rates.
    Kim S; Zhen J; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1947-54. PubMed ID: 17616741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules.
    Bishop JJ; Nance PR; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H113-20. PubMed ID: 12969894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-free layer development and spatial organization of healthy and rigid red blood cells in a microfluidic bifurcation.
    Rashidi Y; Aouane O; Darras A; John T; Harting J; Wagner C; Recktenwald SM
    Soft Matter; 2023 Aug; 19(33):6255-6266. PubMed ID: 37522517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributions of wall shear stress in venular convergences of mouse cremaster muscle.
    Kim MB; Sarelius IH
    Microcirculation; 2003 Apr; 10(2):167-78. PubMed ID: 12700585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.