These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 24473069)
1. Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies. Kalva S; Azhagiya Singam ER; Rajapandian V; Saleena LM; Subramanian V J Mol Graph Model; 2014 Apr; 49():25-37. PubMed ID: 24473069 [TBL] [Abstract][Full Text] [Related]
2. Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products. Gao Q; Wang Y; Hou J; Yao Q; Zhang J J Comput Aided Mol Des; 2017 Jul; 31(7):625-641. PubMed ID: 28623487 [TBL] [Abstract][Full Text] [Related]
3. Screening for the selective inhibitors of MMP-9 from natural products based on pharmacophore modeling and molecular docking in combination with bioassay experiment, hybrid QM/MM calculation, and MD simulation. Hou J; Zou Q; Wang Y; Gao Q; Yao W; Yao Q; Zhang J J Biomol Struct Dyn; 2019 Aug; 37(12):3135-3149. PubMed ID: 30079817 [TBL] [Abstract][Full Text] [Related]
4. Identification of selective MMP-9 inhibitors through multiple e-pharmacophore, ligand-based pharmacophore, molecular docking, and density functional theory approaches. Jana S; Singh SK J Biomol Struct Dyn; 2019 Mar; 37(4):944-965. PubMed ID: 29475408 [TBL] [Abstract][Full Text] [Related]
5. Potent inhibitors precise to S1' loop of MMP-13, a crucial target for osteoarthritis. Kalva S; Saranyah K; Suganya PR; Nisha M; Saleena LM J Mol Graph Model; 2013 Jul; 44():297-310. PubMed ID: 23938376 [TBL] [Abstract][Full Text] [Related]
6. Identification of novel selective MMP-9 inhibitors as potential anti-metastatic lead using structure-based hierarchical virtual screening and molecular dynamics simulation. Kalva S; Agrawal N; Skelton AA; Saleena LM Mol Biosyst; 2016 Jul; 12(8):2519-31. PubMed ID: 27250644 [TBL] [Abstract][Full Text] [Related]
7. Stepwise development of structure-activity relationship of diverse PARP-1 inhibitors through comparative and validated in silico modeling techniques and molecular dynamics simulation. Halder AK; Saha A; Saha KD; Jha T J Biomol Struct Dyn; 2015; 33(8):1756-79. PubMed ID: 25350685 [TBL] [Abstract][Full Text] [Related]
8. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. Vyas VK; Ghate M; Goel A J Mol Graph Model; 2013 May; 42():17-25. PubMed ID: 23507201 [TBL] [Abstract][Full Text] [Related]
9. Combined structure- and ligand-based pharmacophore modeling and molecular dynamics simulation studies to identify selective inhibitors of MMP-8. Kalva S; Vinod D; Saleena LM J Mol Model; 2014 May; 20(5):2191. PubMed ID: 24756550 [TBL] [Abstract][Full Text] [Related]
10. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors. Tripuraneni NS; Azam MA J Biomol Struct Dyn; 2016 Nov; 34(11):2481-92. PubMed ID: 26587754 [TBL] [Abstract][Full Text] [Related]
11. Discovery of promising FtsZ inhibitors by E-pharmacophore, 3D-QSAR, molecular docking study, and molecular dynamics simulation. Qiu Y; Zhou L; Hu Y; Bao Y J Recept Signal Transduct Res; 2019 Apr; 39(2):154-166. PubMed ID: 31355691 [TBL] [Abstract][Full Text] [Related]
12. Pharmacophore identification, docking and "in silico" screening for novel CDK1 inhibitors. Dong X; Yan J; Du L; Wu P; Huang S; Liu T; Hu Y J Mol Graph Model; 2012 Jul; 37():77-86. PubMed ID: 22622012 [TBL] [Abstract][Full Text] [Related]
14. Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays. Adhikari N; Halder AK; Mallick S; Saha A; Saha KD; Jha T Bioorg Med Chem; 2016 Sep; 24(18):4291-4309. PubMed ID: 27452283 [TBL] [Abstract][Full Text] [Related]
15. In-Silico Screening of Ligand Based Pharmacophore, Database Mining and Molecular Docking on 2, 5-Diaminopyrimidines Azapurines as Potential Inhibitors of Glycogen Synthase Kinase-3β. Mishra P; Kesar S; Paliwal SK; Chauhan M; Madan K Cent Nerv Syst Agents Med Chem; 2018; 18(2):150-158. PubMed ID: 29848281 [TBL] [Abstract][Full Text] [Related]
16. Combined ligand and structure-based approaches on HIV-1 integrase strand transfer inhibitors. Reddy KK; Singh SK Chem Biol Interact; 2014 Jul; 218():71-81. PubMed ID: 24792351 [TBL] [Abstract][Full Text] [Related]
17. Pharmacophore-based virtual screening approach for identification of potent natural modulatory compounds of human Toll-like receptor 7. Gupta CL; Babu Khan M; Ampasala DR; Akhtar S; Dwivedi UN; Bajpai P J Biomol Struct Dyn; 2019 Nov; 37(18):4721-4736. PubMed ID: 30661449 [TBL] [Abstract][Full Text] [Related]
18. Vaghefinezhad N; Farsani SF; Gharaghani S Curr Drug Discov Technol; 2021; 18(1):139-157. PubMed ID: 31721705 [TBL] [Abstract][Full Text] [Related]
19. Identification of potential HIV-1 integrase strand transfer inhibitors: in silico virtual screening and QM/MM docking studies. Reddy KK; Singh SK; Tripathi SK; Selvaraj C SAR QSAR Environ Res; 2013; 24(7):581-95. PubMed ID: 23521430 [TBL] [Abstract][Full Text] [Related]
20. In silico design of human IMPDH inhibitors using pharmacophore mapping and molecular docking approaches. Li RJ; Wang YL; Wang QH; Wang J; Cheng MS Comput Math Methods Med; 2015; 2015():418767. PubMed ID: 25784957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]