These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24473226)

  • 21. Transparent and tough bulk composites inspired by nacre.
    Magrini T; Bouville F; Lauria A; Le Ferrand H; Niebel TP; Studart AR
    Nat Commun; 2019 Jun; 10(1):2794. PubMed ID: 31243283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass-ceramics.
    Denry IL; Holloway JA
    Dent Mater; 2004 Mar; 20(3):213-9. PubMed ID: 15209226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on high strength mica-based machinable glass-ceramic].
    Li H; Ran J; Gou L; Wang F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):54-6, 61. PubMed ID: 15022463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enamel-inspired materials design achieving balance of high stiffness and large energy dissipation.
    Zhang S; Liu Y; Shang J; Ujjaman Chudry MK; Zheng Y; Cai J; An B; Zhang D; Zheng R
    J Mech Behav Biomed Mater; 2020 Mar; 103():103587. PubMed ID: 32090916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crack healing in alumina bioceramics.
    Fischer H; Weiss R; Telle R
    Dent Mater; 2008 Mar; 24(3):328-32. PubMed ID: 17644169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchically structured diamond composite with exceptional toughness.
    Yue Y; Gao Y; Hu W; Xu B; Wang J; Zhang X; Zhang Q; Wang Y; Ge B; Yang Z; Li Z; Ying P; Liu X; Yu D; Wei B; Wang Z; Zhou XF; Guo L; Tian Y
    Nature; 2020 Jun; 582(7812):370-374. PubMed ID: 32555490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomimetics for next generation materials.
    Barthelat F
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):2907-19. PubMed ID: 17855221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability.
    Wu C; Luo Y; Cuniberti G; Xiao Y; Gelinsky M
    Acta Biomater; 2011 Jun; 7(6):2644-50. PubMed ID: 21402182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extreme Toughening of Soft Materials with Liquid Metal.
    Kazem N; Bartlett MD; Majidi C
    Adv Mater; 2018 May; 30(22):e1706594. PubMed ID: 29663540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bio-inspired interfacial strengthening strategy through geometrically interlocking designs.
    Zhang Y; Yao H; Ortiz C; Xu J; Dao M
    J Mech Behav Biomed Mater; 2012 Nov; 15():70-7. PubMed ID: 23032427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues.
    Kruzic JJ; Kim DK; Koester KJ; Ritchie RO
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):384-95. PubMed ID: 19627845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toughening Mechanisms in Nanolayered MAX Phase Ceramics-A Review.
    Chen X; Bei G
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of mica-based glass-ceramics with needle-like fluorapatite.
    Xiang Q; Liu Y; Sheng X; Dan X
    Dent Mater; 2007 Feb; 23(2):251-8. PubMed ID: 17134748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fracture of brittle metallic glasses: brittleness or plasticity.
    Xi XK; Zhao DQ; Pan MX; Wang WH; Wu Y; Lewandowski JJ
    Phys Rev Lett; 2005 Apr; 94(12):125510. PubMed ID: 15903937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toughening Brittle Bio-P3HB with Synthetic P3HB of Engineered Stereomicrostructures.
    Zhang Z; Quinn EC; Olmedo-Martínez JL; Caputo MR; Franklin KA; Müller AJ; Chen EY
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202311264. PubMed ID: 37878997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Framework to Predict Failure and Performance of Bone-Inspired Materials.
    Libonati F; Cipriano V; Vergani L; Buehler MJ
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3236-3243. PubMed ID: 33445366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous improvements of strength and toughness in topologically interlocked ceramics.
    Mirkhalaf M; Zhou T; Barthelat F
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9128-9133. PubMed ID: 30139921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry.
    Djumas L; Molotnikov A; Simon GP; Estrin Y
    Sci Rep; 2016 May; 6():26706. PubMed ID: 27216277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales.
    Yang W; Gludovatz B; Zimmermann EA; Bale HA; Ritchie RO; Meyers MA
    Acta Biomater; 2013 Apr; 9(4):5876-89. PubMed ID: 23274521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.