These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24473349)

  • 41. Levels and dynamic changes of serum fibroblast growth factor 23 in hypophosphatemic rickets/osteomalacia.
    Xia WB; Jiang Y; Li M; Xing XP; Wang O; Hu YY; Zhang HB; Liu HC; Meng XW; Zhou XY
    Chin Med J (Engl); 2010 May; 123(9):1158-62. PubMed ID: 20529556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hypophosphatemic rickets.
    Baroncelli GI; Toschi B; Bertelloni S
    Curr Opin Endocrinol Diabetes Obes; 2012 Dec; 19(6):460-7. PubMed ID: 23108197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fibroblast growth factor 23 as a phosphotropic hormone and beyond.
    Fukumoto S; Shimizu Y
    J Bone Miner Metab; 2011 Sep; 29(5):507-14. PubMed ID: 21822586
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Chronic bone pain due to raised FGF23 production? The importance of determining phosphate levels].
    de Jongh RT; Vervloet MG; Bravenboer N; Heijboer AC; den Heijer M; Lips P
    Ned Tijdschr Geneeskd; 2013; 157(28):A5908. PubMed ID: 23841927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Updates on rickets and osteomalacia: anti-FGF23 antibody, a new therapeutic approach for hypophosphatemic rickets/osteomalacia].
    Shimada T
    Clin Calcium; 2013 Oct; 23(10):1469-75. PubMed ID: 24076645
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.
    Clinkenbeard EL; Farrow EG; Summers LJ; Cass TA; Roberts JL; Bayt CA; Lahm T; Albrecht M; Allen MR; Peacock M; White KE
    J Bone Miner Res; 2014 Feb; 29(2):361-9. PubMed ID: 23873717
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Measurement and Interpretation of Fibroblast Growth Factor 23 (FGF23) Concentrations.
    Heijboer AC; Cavalier E
    Calcif Tissue Int; 2023 Feb; 112(2):258-270. PubMed ID: 35665817
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vitamin D metabolism, rickets, and osteomalacia.
    Berry JL; Davies M; Mee AP
    Semin Musculoskelet Radiol; 2002 Sep; 6(3):173-82. PubMed ID: 12541194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oral Iron for Prevention and Treatment of Rickets and Osteomalacia in Autosomal Dominant Hypophosphatemia.
    Högler W; Kapelari K
    J Bone Miner Res; 2020 Feb; 35(2):226-230. PubMed ID: 31834957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Clinical aspect of recent progress in phosphate metabolism. Treatment of hypophophatemia].
    Minagawa M
    Clin Calcium; 2009 Jun; 19(6):852-5. PubMed ID: 19483281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Updates on rickets and osteomalacia: the therapy for FGF23 related rickets].
    Yamamoto T
    Clin Calcium; 2013 Oct; 23(10):1491-6. PubMed ID: 24076648
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene.
    Saito T; Shimizu Y; Hori M; Taguchi M; Igarashi T; Fukumoto S; Fujitab T
    Bone; 2011 Oct; 49(4):913-6. PubMed ID: 21745613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Significance of FGF23 measurement].
    Fukumoto S
    Clin Calcium; 2012 Oct; 22(10):1525-9. PubMed ID: 23023632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Renal phosphate loss in hereditary and acquired disorders of bone mineralization.
    Bielesz B; Klaushofer K; Oberbauer R
    Bone; 2004 Dec; 35(6):1229-39. PubMed ID: 15589204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets.
    Imel EA; Hui SL; Econs MJ
    J Bone Miner Res; 2007 Apr; 22(4):520-6. PubMed ID: 17227222
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of the transgenic approach to determine the role of DMP1 in phosphate regulation.
    Lu Y; Liu S; Xie Y; Yu S; Quarles L; Bonewald LF; Feng JQ
    J Musculoskelet Neuronal Interact; 2007; 7(4):309. PubMed ID: 18094487
    [No Abstract]   [Full Text] [Related]  

  • 57. The changing face of hypophosphatemic disorders in the FGF-23 era.
    Lee JY; Imel EA
    Pediatr Endocrinol Rev; 2013 Jun; 10 Suppl 2(0 2):367-79. PubMed ID: 23858620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical performance of a novel chemiluminescent enzyme immunoassay for FGF23.
    Ito N; Kubota T; Kitanaka S; Fujiwara I; Adachi M; Takeuchi Y; Yamagami H; Kimura T; Shinoda T; Minagawa M; Okazaki R; Ozono K; Seino Y; Fukumoto S
    J Bone Miner Metab; 2021 Nov; 39(6):1066-1075. PubMed ID: 34255195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hypophosphatemic osteomalacia and bone sclerosis caused by a novel homozygous mutation of the FAM20C gene in an elderly man with a mild variant of Raine syndrome.
    Takeyari S; Yamamoto T; Kinoshita Y; Fukumoto S; Glorieux FH; Michigami T; Hasegawa K; Kitaoka T; Kubota T; Imanishi Y; Shimotsuji T; Ozono K
    Bone; 2014 Oct; 67():56-62. PubMed ID: 24982027
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Phosphate sensing and parathyroid gland].
    Mizobuchi M; Suzuki T
    Clin Calcium; 2012 Oct; 22(10):1543-9. PubMed ID: 23023635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.