BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 24473897)

  • 21. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors.
    Friedler A; Blumenzweig I; Baraz L; Steinitz M; Kotler M; Gilon C
    J Mol Biol; 1999 Mar; 287(1):93-101. PubMed ID: 10074409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing prevalence of HIV-1 protease inhibitor-associated mutations correlates with long-term non-suppressive protease inhibitor treatment.
    Kagan RM; Cheung PK; Huard TK; Lewinski MA
    Antiviral Res; 2006 Aug; 71(1):42-52. PubMed ID: 16600392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
    Chellappan S; Kairys V; Fernandes MX; Schiffer C; Gilson MK
    Proteins; 2007 Aug; 68(2):561-7. PubMed ID: 17474129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Persistence of mutations during replication of an HIV library containing combinations of selected protease mutations.
    Song W; Maeda Y; Tenpaku A; Harada S; Yusa K
    Antiviral Res; 2004 Mar; 61(3):173-80. PubMed ID: 15168798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants.
    Majerová-Uhlíková T; Dantuma NP; Lindsten K; Masucci MG; Konvalinka J
    J Clin Virol; 2006 May; 36(1):50-9. PubMed ID: 16527535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand modifications to reduce the relative resistance of multi-drug resistant HIV-1 protease.
    Dewdney TG; Wang Y; Liu Z; Sharma SK; Reiter SJ; Brunzelle JS; Kovari IA; Woster PM; Kovari LC
    Bioorg Med Chem; 2013 Dec; 21(23):7430-4. PubMed ID: 24128815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of HIV-1 protease inhibitor resistance using a protein-inhibitor flexible docking approach.
    Jenwitheesuk E; Samudrala R
    Antivir Ther; 2005; 10(1):157-66. PubMed ID: 15751773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inorganic polyhedral metallacarborane inhibitors of HIV protease: a new approach to overcoming antiviral resistance.
    Kozísek M; Cígler P; Lepsík M; Fanfrlík J; Rezácová P; Brynda J; Pokorná J; Plesek J; Grüner B; Grantz Sasková K; Václavíková J; Král V; Konvalinka J
    J Med Chem; 2008 Aug; 51(15):4839-43. PubMed ID: 18598016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins: amino acid substitutions in the absence of protease inhibitors in mothers and children infected by human immunodeficiency virus type 1.
    Barrie KA; Perez EE; Lamers SL; Farmerie WG; Dunn BM; Sleasman JW; Goodenow MM
    Virology; 1996 May; 219(2):407-16. PubMed ID: 8638406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of polymorphisms at position 89 in the HIV-1 protease gene in the development of drug resistance to HIV-1 protease inhibitors.
    Martinez-Cajas JL; Wainberg MA; Oliveira M; Asahchop EL; Doualla-Bell F; Lisovsky I; Moisi D; Mendelson E; Grossman Z; Brenner BG
    J Antimicrob Chemother; 2012 Apr; 67(4):988-94. PubMed ID: 22315096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoscale flow cytometry reveals interpatient variability in HIV protease activity that correlates with viral infectivity and identifies drug-resistant viruses.
    Bonar MM; Tabler CO; Haqqani AA; Lapointe LE; Galiatsos JA; Joussef-Piña S; Quiñones-Mateu ME; Tilton JC
    Sci Rep; 2020 Oct; 10(1):18101. PubMed ID: 33093566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HIV-2 Protease resistance defined in yeast cells.
    M'Barek NB; Audoly G; Raoult D; Gluschankof P
    Retrovirology; 2006 Sep; 3():58. PubMed ID: 16956392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of probe signal for screening of HIV-1 protease inhibitors in living cells.
    Yao H; Jin S
    Sensors (Basel); 2012 Dec; 12(12):16759-70. PubMed ID: 23223077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.
    Wu M; Petryayeva E; Algar WR
    Anal Chem; 2014 Nov; 86(22):11181-8. PubMed ID: 25361050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of A Fission Yeast Cell-Based Platform for High Throughput Screening of HIV-1 Protease Inhibitors.
    Benko Z; Zhang J; Zhao RY
    Curr HIV Res; 2019; 17(6):429-440. PubMed ID: 31782368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of plant extracts on HIV-1 protease.
    Filho JR; de Sousa Falcão H; Batista LM; Filho JM; Piuvezam MR
    Curr HIV Res; 2010 Oct; 8(7):531-44. PubMed ID: 20946094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rapid and sensitive bacterial assay to determine the inhibitory effect of 'interface' peptides on HIV-1 protease co-expressed in Escherichia coli.
    Ast O; Jentsch KD; Schramm HJ; Hunsmann G; Lüke W; Petry H
    J Virol Methods; 1998 Mar; 71(1):77-85. PubMed ID: 9628224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective and facile assay of human immunodeficiency virus protease activity by a novel fluorogenic reaction.
    Yu Z; Kabashima T; Tang C; Shibata T; Kitazato K; Kobayashi N; Lee MK; Kai M
    Anal Biochem; 2010 Feb; 397(2):197-201. PubMed ID: 19852926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probe detects HIV protease and toxicity of drugs.
    AIDS Patient Care STDS; 2010 Nov; 24(11):744. PubMed ID: 21067358
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.