BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 24473897)

  • 41. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro.
    Lü JM; Yan S; Jamaluddin S; Weakley SM; Liang Z; Siwak EB; Yao Q; Chen C
    Med Sci Monit; 2012 Aug; 18(8):BR293-298. PubMed ID: 22847190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Screening of HIV-1 Protease Using a Combination of an Ultra-High-Throughput Fluorescent-Based Assay and RapidFire Mass Spectrometry.
    Meng J; Lai MT; Munshi V; Grobler J; McCauley J; Zuck P; Johnson EN; Uebele VN; Hermes JD; Adam GC
    J Biomol Screen; 2015 Jun; 20(5):606-15. PubMed ID: 25681434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of protease activity using quantum dots and resonance energy transfer.
    Kim GB; Kim YP
    Theranostics; 2012; 2(2):127-38. PubMed ID: 22375154
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An immunoenzymatic solid-phase assay for quantitative determination of HIV-1 protease activity.
    Gutiérrez OA; Salas E; Hernández Y; Lissi EA; Castrillo G; Reyes O; Garay H; Aguilar A; García B; Otero A; Chavez MA; Duarte CA
    Anal Biochem; 2002 Aug; 307(1):18-24. PubMed ID: 12137774
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity.
    Lindsten K; Uhlíková T; Konvalinka J; Masucci MG; Dantuma NP
    Antimicrob Agents Chemother; 2001 Sep; 45(9):2616-22. PubMed ID: 11502538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. What Are We Missing? The Detergent Triton X-100 Added to Avoid Compound Aggregation Can Affect Assay Results in an Unpredictable Manner.
    Ehlert FGR; Linde K; Diederich WE
    ChemMedChem; 2017 Sep; 12(17):1419-1423. PubMed ID: 28745428
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noninvasive high-throughput single-cell analysis of HIV protease activity using ratiometric flow cytometry.
    Gaber R; Majerle A; Jerala R; Benčina M
    Sensors (Basel); 2013 Nov; 13(12):16330-46. PubMed ID: 24287545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and construction of a synthetic E. coli protease inhibitor detecting biomachine.
    Boonyalekha P; Meechai A; Tayapiwatana C; Kitidee K; Waraho-Zhmayev D
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3580-3583. PubMed ID: 29060672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo imaging of HIV protease activity in amplicon vector-transduced gliomas.
    Shah K; Tung CH; Chang CH; Slootweg E; O'Loughlin T; Breakefield XO; Weissleder R
    Cancer Res; 2004 Jan; 64(1):273-8. PubMed ID: 14729634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [HIV-1 protease inhibitors in review].
    Hilgeroth A
    Pharm Unserer Zeit; 1998 Jan; 27(1):22-5. PubMed ID: 9562781
    [No Abstract]   [Full Text] [Related]  

  • 51. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells.
    Hilton BJ; Wolkowicz R
    PLoS One; 2010 Jun; 5(6):e10940. PubMed ID: 20532177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Single-Cell Platform for Monitoring Viral Proteolytic Cleavage in Different Cellular Compartments.
    Abbadessa D; Smurthwaite CA; Reed CW; Wolkowicz R
    Biochem Insights; 2015; 8(Suppl 2):23-31. PubMed ID: 27688710
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing Fluorescent Peptide Sensors with Dual Specificity for the Detection of HIV-1 Protease.
    Herpoldt KL; Artzy-Schnirman A; Christofferson AJ; Makarucha AJ; de la Rica R; Yarovsky I; Stevens MM
    Chem Mater; 2015 Oct; 27(20):7187-7195. PubMed ID: 28479671
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Turn-On Assay for HIV-1 Protease Inhibitor Selection.
    Shi Y; Li Z; Wang H
    ACS Appl Bio Mater; 2020 Nov; 3(11):7706-7711. PubMed ID: 35019510
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation and Characterization of Quantum Dot-Peptide Conjugates Based on Polyhistidine Tags.
    Krause KD; Tsai HY; Rees K; Kim H; Algar WR
    Methods Mol Biol; 2021; 2355():175-218. PubMed ID: 34386960
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscale flow cytometry reveals interpatient variability in HIV protease activity that correlates with viral infectivity and identifies drug-resistant viruses.
    Bonar MM; Tabler CO; Haqqani AA; Lapointe LE; Galiatsos JA; Joussef-Piña S; Quiñones-Mateu ME; Tilton JC
    Sci Rep; 2020 Oct; 10(1):18101. PubMed ID: 33093566
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple domains of bacterial and human Lon proteases define substrate selectivity.
    He L; Luo D; Yang F; Li C; Zhang X; Deng H; Zhang JR
    Emerg Microbes Infect; 2018 Aug; 7(1):149. PubMed ID: 30120231
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Concepts in Light Microscopy of Viruses.
    Witte R; Andriasyan V; Georgi F; Yakimovich A; Greber UF
    Viruses; 2018 Apr; 10(4):. PubMed ID: 29670029
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Function-based mutation-resistant synthetic signaling device activated by HIV-1 proteolysis.
    Majerle A; Gaber R; Benčina M; Jerala R
    ACS Synth Biol; 2015 Jun; 4(6):667-72. PubMed ID: 25393958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative assessment of in vivo HIV protease activity using genetically engineered QD-based FRET probes.
    Cella LN; Biswas P; Yates MV; Mulchandani A; Chen W
    Biotechnol Bioeng; 2014 Jun; 111(6):1082-7. PubMed ID: 24473897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.