These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24474140)

  • 1. Lorentz-force hydrophone characterization.
    Grasland-Mongrain P; Mari JM; Gilles B; Poizat A; Chapelon JY; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):353-63. PubMed ID: 24474140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.
    Nakazawa M; Aoyagi T; Tabaru M; Nakamura K; Ueha S
    Ultrasonics; 2014 Feb; 54(2):526-36. PubMed ID: 24035608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of an ultrasonic sensor for measuring distance and detecting obstacles.
    Park J; Je Y; Lee H; Moon W
    Ultrasonics; 2010 Mar; 50(3):340-6. PubMed ID: 19919873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
    Huang H; Paramo D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2699-707. PubMed ID: 23443705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of a close-proximity thermoacoustic sensor.
    Xing J; Choi M; Ang W; Yu X; Chen J
    Ultrasound Med Biol; 2013 Sep; 39(9):1613-22. PubMed ID: 23820248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of acoustic cavitation detection thresholds measured with piezo-electric and fiber-optic hydrophone sensors.
    Bull V; Civale J; Rivens I; Ter Haar G
    Ultrasound Med Biol; 2013 Dec; 39(12):2406-21. PubMed ID: 24035410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultrasonic transducer transient compensator design based on a simplified Variable Structure Control algorithm.
    Ma S; Wilkinson AJ; Paulson KS
    Ultrasonics; 2014 Feb; 54(2):502-15. PubMed ID: 23993746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore.
    Kothapalli SVVN; Altman MB; Partanen A; Wan L; Gach HM; Straube W; Hallahan DE; Chen H
    Med Phys; 2017 Sep; 44(9):4890-4899. PubMed ID: 28626862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of propagating and standing waves on cavitation appearance.
    Kenis AM; Grinfeld J; Zadicario E; Vitek S
    Ultrasound Med Biol; 2012 Jan; 38(1):99-108. PubMed ID: 22104538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
    Dausch DE; Castellucci JB; Chou DR; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2484-92. PubMed ID: 19049928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach.
    Wang SH; Tsai MC
    Ultrasonics; 2011 Jul; 51(5):617-24. PubMed ID: 21292292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design considerations and performance of MEMS acoustoelectric ultrasound detectors.
    Wang Z; Ingram P; Greenlee CL; Olafsson R; Norwood RA; Witte RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1906-16. PubMed ID: 24658721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phasing rectangular apertures.
    Baker KL; Homoelle D; Utterback E; Jones SM
    Opt Express; 2009 Oct; 17(22):19551-65. PubMed ID: 19997175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes.
    Bessonova OV; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):290-300. PubMed ID: 23357903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radially composite piezoelectric ceramic tubular transducer in radial vibration.
    Shuyu L; Shuaijun W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2492-8. PubMed ID: 22083782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):62-75. PubMed ID: 24402896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simplified formulae to investigate flexural vibration characteristics of piezoelectric tubes in ultrasonic micro-actuators.
    Zhang H; Zhang SY; Fan L
    Ultrasonics; 2010 Mar; 50(3):397-402. PubMed ID: 19818979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation.
    Loh W; Yegnanarayanan S; Plant JJ; O'Donnell FJ; Grein ME; Klamkin J; Duff SM; Juodawlkis PW
    Opt Express; 2012 Aug; 20(17):19420-30. PubMed ID: 23038585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration modulated subaperture stitching interferometry.
    Liang CW; Chang HS; Lin PC; Lee CC; Chen YC
    Opt Express; 2013 Jul; 21(15):18255-60. PubMed ID: 23938696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.