These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24474148)

  • 1. Carbon nanotube-based tandem absorber with tunable spectral selectivity: transition from near-perfect blackbody absorber to solar selective absorber.
    Selvakumar N; Krupanidhi SB; Barshilia HC
    Adv Mater; 2014 Apr; 26(16):2552-7. PubMed ID: 24474148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, optical simulation and thermal stability of the HfB
    Qiu XL; Gao XH; He CY; Chen BH; Liu G
    RSC Adv; 2019 Sep; 9(51):29726-29733. PubMed ID: 35531519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Spectrally Selective Absorber Using the ZrB
    Wang J; Ren Z; Luo Y; Wu Z; Liu Y; Hou S; Liu X; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40522-40530. PubMed ID: 34407618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling Highly Enhanced Solar Thermoelectric Generator Efficiency by a CuCrMnCoAlN-Based Spectrally Selective Absorber.
    Liu X; Zhao P; He CY; Wang WM; Liu BH; Lu ZW; Wang YF; Guo HX; Liu G; Gao XH
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36288261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-perfect spectrally-selective metasurface solar absorber based on tungsten octagonal prism array.
    Xu M; Guo L; Zhang P; Qiu Y; Li Q; Wang J
    RSC Adv; 2022 Jun; 12(26):16823-16834. PubMed ID: 35754914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable wavelength selectivity of photonic metamaterials-based thermal devices.
    Tian Y; Ghanekar A; Liu X; Sheng J; Zheng Y
    J Photonics Energy; 2019 Jul; 9(3):. PubMed ID: 34084268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-Cr-film-based solar selective absorber with high photo-thermal conversion efficiency and good thermal stability.
    Zhou WX; Shen Y; Hu ET; Zhao Y; Sheng MY; Zheng YX; Wang SY; Lee YP; Wang CZ; Lynch DW; Chen LY
    Opt Express; 2012 Dec; 20(27):28953-62. PubMed ID: 23263136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on heat transfer enhancement of conventional and staggered fin solar air heater coated with CNT-black paint-an experimental approach.
    Madhu B; Kabeel AE; Sathyamurthy R; Sharshir SW; Manokar AM; Raghavendran PR; Chandrashekar T; Mageshbabu D
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32251-32269. PubMed ID: 31902081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.
    Yin Z; Wang H; Jian M; Li Y; Xia K; Zhang M; Wang C; Wang Q; Ma M; Zheng QS; Zhang Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28596-28603. PubMed ID: 28772073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance.
    Liao Q; Zhang P; Yao H; Cheng H; Li C; Qu L
    Adv Sci (Weinh); 2020 Apr; 7(8):1903125. PubMed ID: 32328420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.
    Zhu L; Raman AP; Fan S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12282-7. PubMed ID: 26392542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Plasmonic Refractory Nanocomposites for High-Temperature Solar Photothermal Conversion.
    Huang Z; Cao C; Wang Q; Zhang H; Owens CE; Hart AJ; Cui K
    Nano Lett; 2022 Nov; 22(21):8526-8533. PubMed ID: 36302098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New High-Temperature Durable Absorber Material Solution through a Spinel-Type High Solar Absorptivity Coating on Ti
    Wang W; Ye F; Mu W; Dutta J; Laumert B
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):45008-45017. PubMed ID: 34494820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.
    Pang X; Wei Q; Zhou J; Ma H
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29921783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low reflectance of carbon nanotube and nanoscroll-based thin film coatings: a case study.
    Saini S; Reshmi S; Gouda GM; Kumar S A; K V S; Bhattacharjee K
    Nanoscale Adv; 2021 Jun; 3(11):3184-3198. PubMed ID: 36133669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Close-Space Sublimation-Deposited Ultra-Thin CdSeTe/CdTe Solar Cells for Enhanced Short-Circuit Current Density and Photoluminescence.
    Bothwell AM; Drayton JA; Jundt PM; Sites JR
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar selective coatings based on nickel oxide obtained via spray pyrolysis.
    Voinea M; Ienei E; Bogatu C; Duta A
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4279-84. PubMed ID: 19916443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.