These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 24474207)
1. [O-Demethylation of benzoic acids in wheat seedlings]. Harms H; Prieß I Planta; 1973 Dec; 109(4):307-15. PubMed ID: 24474207 [TBL] [Abstract][Full Text] [Related]
2. [On demethylation and decarboxylation of benzoic acids in plant cell suspension cultures]. Harms H; Haider K; Berlin J; Kiss P; Barz W Planta; 1972 Dec; 105(4):342-51. PubMed ID: 24477847 [TBL] [Abstract][Full Text] [Related]
3. Aerobic and Anaerobic Catabolism of Vanillic Acid and Some Other Methoxy-Aromatic Compounds by Pseudomonas sp. Strain PN-1. Taylor BF Appl Environ Microbiol; 1983 Dec; 46(6):1286-92. PubMed ID: 16346441 [TBL] [Abstract][Full Text] [Related]
4. Catabolism of substituted benzoic acids by streptomyces species. Sutherland JB; Crawford DL; Pometto AL Appl Environ Microbiol; 1981 Feb; 41(2):442-8. PubMed ID: 16345718 [TBL] [Abstract][Full Text] [Related]
5. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. : III. Conversion of 4-Methoxycinnamic Acids into 4-Hydroxybenzoic Acids. Funk C; Brodelius PE Plant Physiol; 1990 Sep; 94(1):102-8. PubMed ID: 16667674 [TBL] [Abstract][Full Text] [Related]
6. Production of methanol from aromatic acids by Pseudomonas putida. Donnelly MI; Dagley S J Bacteriol; 1980 Jun; 142(3):916-24. PubMed ID: 7380811 [TBL] [Abstract][Full Text] [Related]
7. Bacterial degradation of 3,4,5-trimethoxycinnamic acid with production of methanol. Donnelly MI; Dagley S J Bacteriol; 1981 Aug; 147(2):471-6. PubMed ID: 7263612 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. DeWeerd KA; Saxena A; Nagle DP; Suflita JM Appl Environ Microbiol; 1988 May; 54(5):1237-42. PubMed ID: 3389815 [TBL] [Abstract][Full Text] [Related]
9. Demethylation of [14C]-labelled veratric acid and oxidation of methanol and formaldehyde by the white-rot fungus Phlebia radiata. Rogalski J; Hatakka A; Leonowicz A Acta Microbiol Pol; 2000; 49(3-4):207-16. PubMed ID: 11293653 [TBL] [Abstract][Full Text] [Related]
10. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents. Crawford RL; McCoy E; Harkin JM; Kirk TK; Obst JR Appl Microbiol; 1973 Aug; 26(2):176-84. PubMed ID: 4743871 [TBL] [Abstract][Full Text] [Related]
11. Studies on the Biotransformation of Veratric Acid, a Human Metabolite of Mebeverine, by Using the Incubated Hen's Egg. Kiep L; Göhl M; Schmidt J; Seifert K Drug Res (Stuttg); 2015 Sep; 65(9):500-4. PubMed ID: 25310250 [TBL] [Abstract][Full Text] [Related]
12. Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in shoot tissues. Wu H; Haig T; Pratley J; Lemerle D; An M J Chem Ecol; 2001 Jan; 27(1):125-35. PubMed ID: 11382058 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, Characterization, and In Vitro Cancer Cell Growth Inhibition Evaluation of Novel Phosphatidylcholines with Anisic and Veratric Acids. Czarnecka M; Świtalska M; Wietrzyk J; Maciejewska G; Gliszczyńska A Molecules; 2018 Aug; 23(8):. PubMed ID: 30104549 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the Efficacies of Chloromethane, Methionine, and S-Adenosylmethionine as Methyl Precursors in the Biosynthesis of Veratryl Alcohol and Related Compounds in Phanerochaete chrysosporium. Harper DB; McRoberts WC; Kennedy JT Appl Environ Microbiol; 1996 Sep; 62(9):3366-70. PubMed ID: 16535404 [TBL] [Abstract][Full Text] [Related]
15. Substrate-induction of veratric acid O-demethylase in Nocardia sp. Malarczyk E Acta Biochim Pol; 1984; 31(4):383-95. PubMed ID: 6085441 [TBL] [Abstract][Full Text] [Related]
16. Relationship of demethylation processes to veratric acid concentration and cell density in cultures of Rhodococcus erythropolis. Paździoch-Czochra M; Malarczyk E; Sielewiesiuk J Cell Biol Int; 2003; 27(4):325-36. PubMed ID: 12788048 [TBL] [Abstract][Full Text] [Related]
17. Allelochemicals in wheat (Triticum aestivum L.): cultivar difference in the exudation of phenolic acids. Wu H; Haig T; Pratley J; Lemerle D; An M J Agric Food Chem; 2001 Aug; 49(8):3742-5. PubMed ID: 11513658 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves. Whistance GR; Threlfall DR Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508 [TBL] [Abstract][Full Text] [Related]
19. pKa prediction from an ab initio bond length: part 3--benzoic acids and anilines. Harding AP; Popelier PL Phys Chem Chem Phys; 2011 Jun; 13(23):11283-93. PubMed ID: 21573302 [TBL] [Abstract][Full Text] [Related]
20. Identification of a phenolic 3-O-methyltransferase in the lignin-degrading fungus Phanerochaete chrysosporium. Jeffers MR; McRoberts WC; Harper DB Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1975-1981. PubMed ID: 9202473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]