These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24474468)

  • 1. Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation.
    Bhargavi SD; Savitha J
    Bull Environ Contam Toxicol; 2014 Mar; 92(3):369-73. PubMed ID: 24474468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological removal of arsenic pollution by soil fungi.
    Srivastava PK; Vaish A; Dwivedi S; Chakrabarty D; Singh N; Tripathi RD
    Sci Total Environ; 2011 May; 409(12):2430-42. PubMed ID: 21459413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation.
    Banerjee S; Datta S; Chattyopadhyay D; Sarkar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil.
    Chang YC; Nawata A; Jung K; Kikuchi S
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):37-44. PubMed ID: 21681485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.
    Vaxevanidou K; Christou C; Kremmydas GF; Georgakopoulos DG; Papassiopi N
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):282-8. PubMed ID: 25588567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution.
    Ahmad I; Ansari MI; Aqil F
    Indian J Exp Biol; 2006 Jan; 44(1):73-6. PubMed ID: 16430095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium.
    Yamamura S; Yamamoto N; Ike M; Fujita M
    J Biosci Bioeng; 2005 Aug; 100(2):219-22. PubMed ID: 16198269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of arsenic resistant plant-growth promoting indigenous soil bacteria isolated from Center-East regions of India.
    Pandey N; Keshavkant S
    J Basic Microbiol; 2019 Aug; 59(8):807-819. PubMed ID: 31070248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.
    Usman AR; Lee SS; Awad YM; Lim KJ; Yang JE; Ok YS
    Chemosphere; 2012 May; 87(8):872-8. PubMed ID: 22342337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae.
    Sharples JM; Meharg AA; Chambers SM; Cairney JW
    Plant Physiol; 2000 Nov; 124(3):1327-34. PubMed ID: 11080308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil.
    Carrasco L; Azcón R; Kohler J; Roldán A; Caravaca F
    Sci Total Environ; 2011 Feb; 409(6):1205-9. PubMed ID: 21211827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailable cadmium during the bioremediation of phenanthrene-contaminated soils using the diffusive gradients in thin-film technique.
    Amezcua-Allieri MA; Rodríguez-Vázquez R
    Lett Appl Microbiol; 2006 Mar; 42(3):296-9. PubMed ID: 16478520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil.
    Chang J; Shi Y; Si G; Yang Q; Dong J; Chen J
    J Hazard Mater; 2020 Sep; 396():122638. PubMed ID: 32361297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal.
    Srivastava S; Verma PC; Singh A; Mishra M; Singh N; Sharma N; Singh N
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1275-91. PubMed ID: 22410743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China.
    Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G
    J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.
    Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A
    Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxonomy characterization and plumbum bioremediation of novel fungi.
    Zhu Z; Song Q; Dong F
    J Basic Microbiol; 2018 Apr; 58(4):368-376. PubMed ID: 29393504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of nitrobenzene-polluted sediments by Pseudomonas putida.
    Wang C; Li Y; Liu Z; Wang P
    Bull Environ Contam Toxicol; 2009 Dec; 83(6):865-8. PubMed ID: 19593543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.