BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24474512)

  • 1. Photoacoustic measurement of the Grüneisen parameter of tissue.
    Yao DK; Zhang C; Maslov K; Wang LV
    J Biomed Opt; 2014 Jan; 19(1):17007. PubMed ID: 24474512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.
    Guo Z; Favazza C; Garcia-Uribe A; Wang LV
    J Biomed Opt; 2012 Jun; 17(6):066011. PubMed ID: 22734767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic measurement of the Grüneisen parameter using an integrating sphere.
    Villanueva Y; Hondebrink E; Petersen W; Steenbergen W
    Rev Sci Instrum; 2014 Jul; 85(7):074904. PubMed ID: 25085163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of frequency-domain photoacoustics to temperature-dependent measurements of the Grüneisen parameter in lipids.
    Liang S; Lashkari B; Choi SSS; Ntziachristos V; Mandelis A
    Photoacoustics; 2018 Sep; 11():56-64. PubMed ID: 30112278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative photoacoustic integrating sphere (QPAIS) platform for absorption coefficient and Grüneisen parameter measurements: Demonstration with human blood.
    Villanueva-Palero Y; Hondebrink E; Petersen W; Steenbergen W
    Photoacoustics; 2017 Jun; 6():9-15. PubMed ID: 28417067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic resonance spectroscopy for biological tissue characterization.
    Gao F; Feng X; Zheng Y; Ohl CD
    J Biomed Opt; 2014 Jun; 19(6):067006. PubMed ID: 24928154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions.
    Petrova E; Ermilov S; Su R; Nadvoretskiy V; Conjusteau A; Oraevsky A
    Opt Express; 2013 Oct; 21(21):25077-90. PubMed ID: 24150350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of optical absorption coefficient with focusing photoacoustic imaging.
    Li Z; Li H; Zeng Z; Xie W; Chen WR
    J Biomed Opt; 2012 Jun; 17(6):061216. PubMed ID: 22734746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.
    Laufer J; Delpy D; Elwell C; Beard P
    Phys Med Biol; 2007 Jan; 52(1):141-68. PubMed ID: 17183133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array.
    Prost A; Funke A; Tanter M; Aubry JF; Bossy E
    J Biomed Opt; 2012 Jun; 17(6):061205. PubMed ID: 22734735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study.
    Zhou Y; Tang E; Luo J; Yao J
    J Biomed Opt; 2018 Jan; 23(1):1-10. PubMed ID: 29380565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo.
    Zhou Y; Yao J; Maslov KI; Wang LV
    J Biomed Opt; 2014 Mar; 19(3):37001. PubMed ID: 24589987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time monitoring of high-intensity focused ultrasound ablations with photoacoustic technique: an in vitro study.
    Cui H; Yang X
    Med Phys; 2011 Oct; 38(10):5345-50. PubMed ID: 21992353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging and sensing based on dual-pulse nonlinear photoacoustic contrast: a preliminary study on fatty liver.
    Tian C; Xie Z; Fabiilli ML; Wang X
    Opt Lett; 2015 May; 40(10):2253-6. PubMed ID: 26393712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue.
    Guo Z; Hu S; Wang LV
    Opt Lett; 2010 Jun; 35(12):2067-9. PubMed ID: 20548388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a diffuse optical measurements-assisted quantitative photoacoustic tomographic method in reflection geometry.
    Xu C; Kumavor PD; Aguirre A; Zhu Q
    J Biomed Opt; 2012 Jun; 17(6):061213. PubMed ID: 22734743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system.
    Roumeliotis M; Ephrat P; Patrick J; Carson JJ
    Opt Express; 2009 Aug; 17(17):15228-38. PubMed ID: 19688001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal intravascular photoacoustic imaging.
    Wang B; Emelianov S
    Biomed Opt Express; 2011 Nov; 2(11):3072-8. PubMed ID: 22076268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.
    Laufer J; Elwell C; Delpy D; Beard P
    Phys Med Biol; 2005 Sep; 50(18):4409-28. PubMed ID: 16148401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range.
    Allen TJ; Hall A; Dhillon AP; Owen JS; Beard PC
    J Biomed Opt; 2012 Jun; 17(6):061209. PubMed ID: 22734739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.