These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24474648)

  • 1. Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy.
    Nikić I; Plass T; Schraidt O; Szymański J; Briggs JA; Schultz C; Lemke EA
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2245-9. PubMed ID: 24474648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeling proteins on live mammalian cells using click chemistry.
    Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA
    Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Evaluation of Novel Ring-Strained Noncanonical Amino Acids for Residue-Specific Bioorthogonal Reactions in Living Cells.
    Reinkemeier CD; Koehler C; Sauter PF; Shymanska NV; Echalier C; Rutkowska A; Will DW; Schultz C; Lemke EA
    Chemistry; 2021 Apr; 27(19):6094-6099. PubMed ID: 33577120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic encoding of unnatural amino acids for labeling proteins.
    Lang K; Davis L; Chin JW
    Methods Mol Biol; 2015; 1266():217-28. PubMed ID: 25560078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy.
    Beliu G; Kurz AJ; Kuhlemann AC; Behringer-Pliess L; Meub M; Wolf N; Seibel J; Shi ZD; Schnermann M; Grimm JB; Lavis LD; Doose S; Sauer M
    Commun Biol; 2019; 2():261. PubMed ID: 31341960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Use of Unnatural Amino Acids Enables Dual-Color Super-Resolution Imaging of Proteins via Click Chemistry.
    Saal KA; Richter F; Rehling P; Rizzoli SO
    ACS Nano; 2018 Dec; 12(12):12247-12254. PubMed ID: 30525434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioorthogonal Click Chemistry Enables Site-specific Fluorescence Labeling of Functional NMDA Receptors for Super-Resolution Imaging.
    Neubert F; Beliu G; Terpitz U; Werner C; Geis C; Sauer M; Doose S
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16364-16369. PubMed ID: 30347512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond.
    Nikić I; Lemke EA
    Curr Opin Chem Biol; 2015 Oct; 28():164-73. PubMed ID: 26302384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.
    Knorr G; Kozma E; Herner A; Lemke EA; Kele P
    Chemistry; 2016 Jun; 22(26):8972-9. PubMed ID: 27218228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal genetically encoded tags for fluorescent protein labeling in living neurons.
    Arsić A; Hagemann C; Stajković N; Schubert T; Nikić-Spiegel I
    Nat Commun; 2022 Jan; 13(1):314. PubMed ID: 35031604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorogenic Tetrazine-Siliconrhodamine Probe for the Labeling of Noncanonical Amino Acid Tagged Proteins.
    Kozma E; Paci G; Estrada Girona G; Lemke EA; Kele P
    Methods Mol Biol; 2018; 1728():337-363. PubMed ID: 29405009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent bioorthogonal labeling of class B GPCRs in live cells.
    Gangam SK; Lin Q
    Methods Enzymol; 2020; 641():95-111. PubMed ID: 32713539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Genetically Encoded Isonitrile Lysine for Orthogonal Bioorthogonal Labeling Schemes.
    Szatmári Á; Cserép GB; Molnár TÁ; Söveges B; Biró A; Várady G; Szabó E; Németh K; Kele P
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular bioorthogonal labeling of glucagon receptor via tetrazine ligation.
    Tian Y; Fang M; Lin Q
    Bioorg Med Chem; 2021 Aug; 43():116256. PubMed ID: 34153838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-Specific Protein Labeling with Tetrazine Amino Acids.
    Blizzard RJ; Gibson TE; Mehl RA
    Methods Mol Biol; 2018; 1728():201-217. PubMed ID: 29405000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAP/CLIP-Tags and Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC)/Inverse Electron Demand Diels-Alder (IEDDA) for Intracellular Orthogonal/Bioorthogonal Labeling.
    Macias-Contreras M; He H; Little KN; Lee JP; Campbell RP; Royzen M; Zhu L
    Bioconjug Chem; 2020 May; 31(5):1370-1381. PubMed ID: 32223177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-resolution Microscopy of Clickable Amino Acids Reveals the Effects of Fluorescent Protein Tagging on Protein Assemblies.
    Vreja IC; Nikić I; Göttfert F; Bates M; Kröhnert K; Outeiro TF; Hell SW; Lemke EA; Rizzoli SO
    ACS Nano; 2015 Nov; 9(11):11034-41. PubMed ID: 26498474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.
    Peng T; Hang HC
    J Am Chem Soc; 2016 Nov; 138(43):14423-14433. PubMed ID: 27768298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Code Expansion- and Click Chemistry-Based Site-Specific Protein Labeling for Intracellular DNA-PAINT Imaging.
    Nikić-Spiegel I
    Methods Mol Biol; 2018; 1728():279-295. PubMed ID: 29405005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.