These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24474808)

  • 1. The role of microRNAs in the control of flowering time.
    Spanudakis E; Jackson S
    J Exp Bot; 2014 Feb; 65(2):365-80. PubMed ID: 24474808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target-mimicry based diminution of miRNA167 reinforced flowering-time phenotypes in tobacco via spatial-transcriptional biases of flowering-associated miRNAs.
    Arora S; Pandey DK; Chaudhary B
    Gene; 2019 Jan; 682():67-80. PubMed ID: 30292869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways.
    Huo H; Wei S; Bradford KJ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):E2199-206. PubMed ID: 27035986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis.
    Lee H; Yoo SJ; Lee JH; Kim W; Yoo SK; Fitzgerald H; Carrington JC; Ahn JH
    Nucleic Acids Res; 2010 May; 38(9):3081-93. PubMed ID: 20110261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To bloom or not to bloom: role of microRNAs in plant flowering.
    Teotia S; Tang G
    Mol Plant; 2015 Mar; 8(3):359-77. PubMed ID: 25737467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways.
    Li Y; Li C; Ding G; Jin Y
    BMC Evol Biol; 2011 May; 11():122. PubMed ID: 21569383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARGONAUTE5 Represses Age-Dependent Induction of Flowering through Physical and Functional Interaction with miR156 in Arabidopsis.
    Roussin-Léveillée C; Silva-Martins G; Moffett P
    Plant Cell Physiol; 2020 May; 61(5):957-966. PubMed ID: 32105323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEMPRANILLO is a direct repressor of the microRNA miR172.
    Aguilar-Jaramillo AE; Marín-González E; Matías-Hernández L; Osnato M; Pelaz S; Suárez-López P
    Plant J; 2019 Nov; 100(3):522-535. PubMed ID: 31310397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions.
    Jung JH; Seo PJ; Kang SK; Park CM
    Plant Mol Biol; 2011 May; 76(1-2):35-45. PubMed ID: 21373962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering.
    Jung JH; Seo PJ; Ahn JH; Park CM
    J Biol Chem; 2012 May; 287(19):16007-16. PubMed ID: 22431732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Critical Role of miRNAs in Regulation of Flowering Time and Flower Development.
    Waheed S; Zeng L
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32192095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis.
    Kim JJ; Lee JH; Kim W; Jung HS; Huijser P; Ahn JH
    Plant Physiol; 2012 May; 159(1):461-78. PubMed ID: 22427344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa.
    Li Y; Li W; Jin YX
    Acta Biochim Biophys Sin (Shanghai); 2005 Feb; 37(2):75-87. PubMed ID: 15685364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression.
    Li X; Bian H; Song D; Ma S; Han N; Wang J; Zhu M
    Ann Bot; 2013 May; 111(5):791-9. PubMed ID: 23404992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of dicer-like 1-late flowering phenotype by miR172 expressed by the noncanonical DCL4-dependent biogenesis pathway.
    Tsuzuki M; Takeda A; Watanabe Y
    RNA; 2014 Aug; 20(8):1320-7. PubMed ID: 24966167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L.
    Bhat A; Mishra S; Kaul S; Dhar MK
    Protoplasma; 2024 Jul; 261(4):749-769. PubMed ID: 38340171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redundant and specific roles of individual MIR172 genes in plant development.
    Lian H; Wang L; Ma N; Zhou CM; Han L; Zhang TQ; Wang JW
    PLoS Biol; 2021 Feb; 19(2):e3001044. PubMed ID: 33529193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of flowering time by the miR156-mediated age pathway.
    Wang JW
    J Exp Bot; 2014 Sep; 65(17):4723-30. PubMed ID: 24958896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313.
    Aydinoglu F; Lucas SJ
    Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina.
    Bergonzi S; Albani MC; Ver Loren van Themaat E; Nordström KJ; Wang R; Schneeberger K; Moerland PD; Coupland G
    Science; 2013 May; 340(6136):1094-7. PubMed ID: 23723236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.