These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24474937)
41. Characterization of Bacillus thuringiensis strain DOR4 toxic to castor semilooper Achaea janata: proteolytic processing and binding of toxins to receptors. Budatha M; Meur G; Vimala Devi PS; Kirti PB; Dutta-Gupta A Curr Microbiol; 2008 Jul; 57(1):72-7. PubMed ID: 18437459 [TBL] [Abstract][Full Text] [Related]
42. Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis spore-crystal mixtures and purified crystal proteins and associated resistance development in India. Mohan M; Gujar GT Bull Entomol Res; 2002 Dec; 92(6):489-98. PubMed ID: 17598300 [TBL] [Abstract][Full Text] [Related]
43. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
44. Effects of Zolfaghari M; Yin F; Jurat-Fuentes JL; Xiao Y; Peng Z; Wang J; Yang X; Li ZY Insects; 2024 Aug; 15(8):. PubMed ID: 39194800 [TBL] [Abstract][Full Text] [Related]
45. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. Liu S; Wang S; Wu S; Wu Y; Yang Y PLoS One; 2020; 15(1):e0228159. PubMed ID: 32004347 [TBL] [Abstract][Full Text] [Related]
46. Resistance to Bt maize in Mythimna unipuncta (Lepidoptera: Noctuidae) is mediated by alteration in Cry1Ab protein activation. González-Cabrera J; García M; Hernández-Crespo P; Farinós GP; Ortego F; Castañera P Insect Biochem Mol Biol; 2013 Aug; 43(8):635-43. PubMed ID: 23603093 [TBL] [Abstract][Full Text] [Related]
47. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
48. Contribution of Bacillus thuringiensis Spores to Toxicity of Purified Cry Proteins Towards Indianmeal Moth Larvae. Johnson DE; McGaughey WH Curr Microbiol; 1996 Jul; 33(1):54-9. PubMed ID: 8661690 [TBL] [Abstract][Full Text] [Related]
49. Changes in protease activity and Cry3Aa toxin binding in the Colorado potato beetle: implications for insect resistance to Bacillus thuringiensis toxins. Loseva O; Ibrahim M; Candas M; Koller CN; Bauer LS; Bulla LA Insect Biochem Mol Biol; 2002 May; 32(5):567-77. PubMed ID: 11891133 [TBL] [Abstract][Full Text] [Related]
51. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
52. Efficacy of Bacillus thuringiensis (var. kurstaki) Against Diamondback Moth (Plutella xylostella L.) Eggs and Larvae on Cabbage Under Semi-Controlled Greenhouse Conditions. Legwaila MM; Munthali DC; Kwerepe BC; Obopile M Int J Insect Sci; 2015; 7():39-45. PubMed ID: 26816488 [TBL] [Abstract][Full Text] [Related]
53. The Parasporal Body of Rudd SR; Miranda LS; Curtis HR; Bigot Y; Diaz-Mendoza M; Hice R; Nizet V; Park HW; Blaha G; Federici BA; Bideshi DK Biology (Basel); 2023 Nov; 12(11):. PubMed ID: 37998020 [TBL] [Abstract][Full Text] [Related]
54. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. van Frankenhuyzen K; Liu Y; Tonon A J Invertebr Pathol; 2010 Feb; 103(2):124-31. PubMed ID: 20035766 [TBL] [Abstract][Full Text] [Related]
55. Cross-Resistance to Bacillus thuringiensis Toxin CryIF in the Diamondback Moth (Plutella xylostella). Tabashnik BE; Finson N; Johnson MW; Heckel DG Appl Environ Microbiol; 1994 Dec; 60(12):4627-9. PubMed ID: 16349471 [TBL] [Abstract][Full Text] [Related]
56. Synergistic Effect of Combining Plutella xylostella Granulovirus and Bacillus thuringiensis at Sublethal Dosages on Controlling of Diamondback Moth (Lepidoptera: Plutellidae). Han G; Li C; Liu Q; Xu J J Econ Entomol; 2015 Oct; 108(5):2184-91. PubMed ID: 26453707 [TBL] [Abstract][Full Text] [Related]
57. Development of a new broad-spectrum microencapsulation-based spray drying formulation of Duraisamy K; Yu NH; Kim SH; Baek JH; Son JY; Choi E; Park MG; Kim J; Choi JY; Sang MK; Je YH; Kim JC Front Microbiol; 2023; 14():1273725. PubMed ID: 38075926 [TBL] [Abstract][Full Text] [Related]
58. Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Denolf P; Hendrickx K; Van Damme J; Jansens S; Peferoen M; Degheele D; Van Rie J Eur J Biochem; 1997 Sep; 248(3):748-61. PubMed ID: 9342226 [TBL] [Abstract][Full Text] [Related]
59. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Dorsch JA; Candas M; Griko NB; Maaty WS; Midboe EG; Vadlamudi RK; Bulla LA Insect Biochem Mol Biol; 2002 Sep; 32(9):1025-36. PubMed ID: 12213239 [TBL] [Abstract][Full Text] [Related]
60. Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation. García-Gómez BI; Cano SN; Zagal EE; Dantán-Gonzalez E; Bravo A; Soberón M mBio; 2019 Nov; 10(6):. PubMed ID: 31772047 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]