BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24475028)

  • 1. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation.
    Paliwal V; Raju SC; Modak A; Phale PS; Purohit HJ
    PLoS One; 2014; 9(1):e84000. PubMed ID: 24475028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 3. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzoate transport in Pseudomonas putida CSV86.
    Choudhary A; Purohit H; Phale PS
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28591829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.
    Jiménez JI; Miñambres B; García JL; Díaz E
    Environ Microbiol; 2002 Dec; 4(12):824-41. PubMed ID: 12534466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.
    Karishma M; Trivedi VD; Choudhary A; Mhatre A; Kambli P; Desai J; Phale PS
    FEMS Microbiol Lett; 2015 Oct; 362(20):. PubMed ID: 26316546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86.
    Basu A; Phale PS
    Biodegradation; 2008 Feb; 19(1):83-92. PubMed ID: 17487554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation.
    Phale PS; Mohapatra B; Malhotra H; Shah BA
    Environ Microbiol; 2022 Jun; 24(6):2797-2816. PubMed ID: 34347343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional genome mining and taxono-genomics reveal eco-physiological traits and species distinctiveness of aromatic-degrading Pseudomonas bharatica sp. nov.
    Mohapatra B; Nain S; Sharma R; Phale PS
    Environ Microbiol Rep; 2022 Jun; 14(3):464-474. PubMed ID: 35388632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture.
    Nigam A; Phale PS; Wangikar PP
    Bioresour Technol; 2012 Jun; 114():484-91. PubMed ID: 22494573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86.
    Basu A; Phale PS
    FEMS Microbiol Lett; 2006 Jun; 259(2):311-6. PubMed ID: 16734795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory.
    Nogales J; Palsson BØ; Thiele I
    BMC Syst Biol; 2008 Sep; 2():79. PubMed ID: 18793442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis.
    Cánovas D; Cases I; de Lorenzo V
    Environ Microbiol; 2003 Dec; 5(12):1242-56. PubMed ID: 14641571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86.
    Basu A; Dixit SS; Phale PS
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):579-85. PubMed ID: 12687299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life Within a Contaminated Niche: Comparative Genomic Analyses of an Integrative Conjugative Element ICE
    Mohapatra B; Malhotra H; Phale PS
    Front Microbiol; 2022; 13():928848. PubMed ID: 35875527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of
    Malhotra H; Dhamale T; Kaur S; Kasarlawar ST; Phale PS
    Microbiol Spectr; 2024 Jun; ():e0028424. PubMed ID: 38869268
    [No Abstract]   [Full Text] [Related]  

  • 18. In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1.
    Tikariha H; Pal RR; Qureshi A; Kapley A; Purohit HJ
    Gene; 2016 Oct; 591(2):382-92. PubMed ID: 27317892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida.
    Arias-Barrau E; Olivera ER; Luengo JM; Fernández C; Galán B; García JL; Díaz E; Miñambres B
    J Bacteriol; 2004 Aug; 186(15):5062-77. PubMed ID: 15262943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of nah-1 genes of the Pseudomonas putida naphthalene-degrading NPL-41 plasmid operon.
    Serebriiskaya TS; Lenets AA; Goldenkova IV; Kobets NS; Piruzian ES
    Mol Gen Mikrobiol Virusol; 1999; (4):33-6. PubMed ID: 10621937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.