BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24475028)

  • 21. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86
    Shah BA; Kasarlawar ST; Phale PS
    Microbiol Spectr; 2022 Dec; 10(6):e0381822. PubMed ID: 36354357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds.
    Morales G; Linares JF; Beloso A; Albar JP; Martínez JL; Rojo F
    J Bacteriol; 2004 Mar; 186(5):1337-44. PubMed ID: 14973036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Structural and functional variability of genetic systems for catabolizing polycyclic aromatic hydrocarbons in Pseudomonas putida strains].
    Kosheleva IA; Izmalkova TIu; Sokolov SL; Sazonova OI; Boronin AM
    Genetika; 2003 Sep; 39(9):1185-92. PubMed ID: 14582387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86.
    Shrivastava R; Basu B; Godbole A; Mathew MK; Apte SK; Phale PS
    Microbiology (Reading); 2011 May; 157(Pt 5):1531-1540. PubMed ID: 21330430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively.
    Choi EN; Cho MC; Kim Y; Kim CK; Lee K
    Microbiology (Reading); 2003 Mar; 149(Pt 3):795-805. PubMed ID: 12634347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide analytical approaches using semi-quantitative expression proteomics for aromatic hydrocarbon metabolism in Pseudomonas putida F1.
    Kasahara Y; Morimoto H; Kuwano M; Kadoya R
    J Microbiol Methods; 2012 Dec; 91(3):434-42. PubMed ID: 23022446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.
    Basu A; Apte SK; Phale PS
    Appl Environ Microbiol; 2006 Mar; 72(3):2226-30. PubMed ID: 16517677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A unique global metabolic trait of
    Dhamale T; Saha BK; Papade SE; Singh S; Phale PS
    Microbiology (Reading); 2022 Aug; 168(8):. PubMed ID: 35925665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of transposons on expression of genes for naphthalene biodegradation in Pseudomonas putida BS202(NPL-1) and derivative strains].
    Sokolov SL; Kosheleva IA; Filonov AE; Boronin AM
    Mikrobiologiia; 2005; 74(1):79-86. PubMed ID: 15835782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds.
    Tang H; Yu H; Li Q; Wang X; Gai Z; Yin G; Su F; Tao F; Ma C; Xu P
    J Bacteriol; 2011 Dec; 193(23):6789-90. PubMed ID: 22072645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway.
    Nichols NN; Harwood CS
    J Bacteriol; 1995 Dec; 177(24):7033-40. PubMed ID: 8522507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The organization of naphthalene degradation genes in Pseudomonas putida strain AK5.
    Izmalkova TY; Sazonova OI; Nagornih MO; Sokolov SL; Kosheleva IA; Boronin AM
    Res Microbiol; 2013 Apr; 164(3):244-53. PubMed ID: 23266498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor.
    Phoenix P; Keane A; Patel A; Bergeron H; Ghoshal S; Lau PC
    Environ Microbiol; 2003 Dec; 5(12):1309-27. PubMed ID: 14641576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implications of the xylQ gene of TOL plasmid pWW102 for the evolution of aromatic catabolic pathways.
    Aemprapa S; Williams PA
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1387-1396. PubMed ID: 9611813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida.
    Cowles CE; Nichols NN; Harwood CS
    J Bacteriol; 2000 Nov; 182(22):6339-46. PubMed ID: 11053377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation.
    Tang H; Yao Y; Wang L; Yu H; Ren Y; Wu G; Xu P
    Sci Rep; 2012; 2():377. PubMed ID: 22530095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome features of Pseudomonas putida LS46, a novel polyhydroxyalkanoate producer and its comparison with other P. putida strains.
    Sharma PK; Fu J; Zhang X; Fristensky B; Sparling R; Levin DB
    AMB Express; 2014; 4():37. PubMed ID: 25401060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into Mobile Genetic Elements of the Biocide-Degrading Bacterium
    Carraro N; Sentchilo V; Polák L; Bertelli C; van der Meer JR
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.