These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 24475212)
1. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. Brunet C; Chandrasekaran R; Barra L; Giovagnetti V; Corato F; Ruban AV PLoS One; 2014; 9(1):e87015. PubMed ID: 24475212 [TBL] [Abstract][Full Text] [Related]
2. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms. Giovagnetti V; Flori S; Tramontano F; Lavaud J; Brunet C PLoS One; 2014; 9(8):e103782. PubMed ID: 25083713 [TBL] [Abstract][Full Text] [Related]
3. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
5. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Blommaert L; Chafai L; Bailleul B Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542 [TBL] [Abstract][Full Text] [Related]
6. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333 [TBL] [Abstract][Full Text] [Related]
7. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton? van de Poll WH; Buma AG Photochem Photobiol Sci; 2009 Sep; 8(9):1295-301. PubMed ID: 19707617 [TBL] [Abstract][Full Text] [Related]
8. Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. Schellenberger Costa B; Jungandreas A; Jakob T; Weisheit W; Mittag M; Wilhelm C J Exp Bot; 2013 Jan; 64(2):483-93. PubMed ID: 23183259 [TBL] [Abstract][Full Text] [Related]
9. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. Lepetit B; Gélin G; Lepetit M; Sturm S; Vugrinec S; Rogato A; Kroth PG; Falciatore A; Lavaud J New Phytol; 2017 Apr; 214(1):205-218. PubMed ID: 27870063 [TBL] [Abstract][Full Text] [Related]
10. Molecular events accompanying aggregation-induced energy quenching in fucoxanthin-chlorophyll proteins. Alexandre MTA; Krüger TPJ; Pascal AA; Veremeienko V; Llansola-Portoles MJ; Gundermann K; van Grondelle R; Büchel C; Robert B Biochim Biophys Acta Bioenerg; 2024 Nov; 1865(4):149500. PubMed ID: 39074571 [TBL] [Abstract][Full Text] [Related]
11. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. Cruz S; Goss R; Wilhelm C; Leegood R; Horton P; Jakob T J Exp Bot; 2011 Jan; 62(2):509-19. PubMed ID: 20876335 [TBL] [Abstract][Full Text] [Related]
12. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Serôdio J; Lavaud J Photosynth Res; 2011 May; 108(1):61-76. PubMed ID: 21516348 [TBL] [Abstract][Full Text] [Related]
13. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related]
14. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi. Smerilli A; Orefice I; Corato F; Gavalás Olea A; Ruban AV; Brunet C Environ Microbiol; 2017 Feb; 19(2):611-627. PubMed ID: 27712003 [TBL] [Abstract][Full Text] [Related]
15. Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. Park S; Jung G; Hwang YS; Jin E Planta; 2010 Jan; 231(2):349-60. PubMed ID: 19924439 [TBL] [Abstract][Full Text] [Related]
16. The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex. Guglielmi G; Lavaud J; Rousseau B; Etienne AL; Houmard J; Ruban AV FEBS J; 2005 Sep; 272(17):4339-48. PubMed ID: 16128804 [TBL] [Abstract][Full Text] [Related]
17. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum. Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287 [TBL] [Abstract][Full Text] [Related]
18. The effect of different light regimes on pigments in Coscinodiscus granii. Su Y Photosynth Res; 2019 Jun; 140(3):301-310. PubMed ID: 30478709 [TBL] [Abstract][Full Text] [Related]
19. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316 [TBL] [Abstract][Full Text] [Related]
20. An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. Kansy M; Gurowietz A; Wilhelm C; Goss R BMC Plant Biol; 2017 Nov; 17(1):221. PubMed ID: 29178846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]