These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24475265)

  • 1. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal.
    Amorim F; Carvalho SB; Honrado J; Rebelo H
    PLoS One; 2014; 9(1):e87291. PubMed ID: 24475265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-free species distribution models describe macroecological properties of protected area networks.
    Robinson JL; Fordyce JA
    PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wind energy development and wildlife conservation in Lithuania: A mapping tool for conflict assessment.
    Morkūnė R; Marčiukaitis M; Jurkin V; Gecevičius G; Morkūnas J; Raudonikis L; Markevičius A; Narščius A; Gasiūnaitė ZR
    PLoS One; 2020; 15(1):e0227735. PubMed ID: 31940412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Peripheral Bat Populations Using Maximum-Entropy Suitability Modeling.
    Barnhart PR; Gillam EH
    PLoS One; 2016; 11(12):e0152508. PubMed ID: 27935936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.
    Luo Z; Jiang Z; Tang S
    Ecol Appl; 2015 Jan; 25(1):24-38. PubMed ID: 26255355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation.
    Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD
    Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid climate driven shifts in wintering distributions of three common waterbird species.
    Lehikoinen A; Jaatinen K; Vähätalo AV; Clausen P; Crowe O; Deceuninck B; Hearn R; Holt CA; Hornman M; Keller V; Nilsson L; Langendoen T; Tománková I; Wahl J; Fox AD
    Glob Chang Biol; 2013 Jul; 19(7):2071-81. PubMed ID: 23509023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change.
    Rushing CS; Royle JA; Ziolkowski DJ; Pardieck KL
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12897-12903. PubMed ID: 32457137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future climatically suitable areas for bats in South Asia.
    Srinivasulu A; Zeale MRK; Srinivasulu B; Srinivasulu C; Jones G; González-Suárez M
    Ecol Evol; 2024 May; 14(5):e11420. PubMed ID: 38774139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the connectivity of a protected areas' network under the prism of global change: the efficiency of the European Natura 2000 network for four birds of prey.
    Mazaris AD; Papanikolaou AD; Barbet-Massin M; Kallimanis AS; Jiguet F; Schmeller DS; Pantis JD
    PLoS One; 2013; 8(3):e59640. PubMed ID: 23527237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change-driven range losses among bumblebee species are poised to accelerate.
    Sirois-Delisle C; Kerr JT
    Sci Rep; 2018 Oct; 8(1):14464. PubMed ID: 30337544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling habitat suitability of bats to identify high priority areas for field monitoring and conservation.
    Kafash A; Ashrafi S; Yousefi M
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25881-25891. PubMed ID: 34851481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends.
    Paprocki N; Heath JA; Novak SJ
    PLoS One; 2014; 9(1):e86814. PubMed ID: 24466253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.
    Capinha C; Larson ER; Tricarico E; Olden JD; Gherardi F
    Conserv Biol; 2013 Aug; 27(4):731-40. PubMed ID: 23531056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planning for climate change through additions to a national protected area network: implications for cost and configuration.
    Lawler JJ; Rinnan DS; Michalak JL; Withey JC; Randels CR; Possingham HP
    Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1794):20190117. PubMed ID: 31983335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climatic-Induced Shifts in the Distribution of Teak (Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning.
    Deb JC; Phinn S; Butt N; McAlpine CA
    Environ Manage; 2017 Sep; 60(3):422-435. PubMed ID: 28474209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change and the distribution of neotropical red-bellied toads (Melanophryniscus, Anura, Amphibia): how to prioritize species and populations?
    Zank C; Becker FG; Abadie M; Baldo D; Maneyro R; Borges-Martins M
    PLoS One; 2014; 9(4):e94625. PubMed ID: 24755937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Geographic Assessment of the Global Scope for Rewilding with Wild-Living Horses (Equus ferus).
    Naundrup PJ; Svenning JC
    PLoS One; 2015; 10(7):e0132359. PubMed ID: 26177104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directionality of recent bird distribution shifts and climate change in Great Britain.
    Gillings S; Balmer DE; Fuller RJ
    Glob Chang Biol; 2015 Jun; 21(6):2155-68. PubMed ID: 25482202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning.
    Lemes P; Loyola RD
    PLoS One; 2013; 8(1):e54323. PubMed ID: 23349850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.