These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 2447536)
1. Omega-conotoxin does not block the verapamil-sensitive calcium channels at mouse motor nerve terminals. Anderson AJ; Harvey AL Neurosci Lett; 1987 Nov; 82(2):177-80. PubMed ID: 2447536 [TBL] [Abstract][Full Text] [Related]
2. Inhibition by neosurugatoxin and omega-conotoxin of acetylcholine release and muscle and neuronal nicotinic receptors in mouse neuromuscular junction. Hong SJ; Tsuji K; Chang CC Neuroscience; 1992; 48(3):727-35. PubMed ID: 1318519 [TBL] [Abstract][Full Text] [Related]
3. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals. Xu YF; Hewett SJ; Atchison WD J Neurophysiol; 1998 Sep; 80(3):1056-69. PubMed ID: 9744921 [TBL] [Abstract][Full Text] [Related]
4. Potassium depolarization elevates cytosolic free calcium concentration in rat anterior pituitary cells through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels. Meier K; Knepel W; Schöfl C Endocrinology; 1988 Jun; 122(6):2764-70. PubMed ID: 2453348 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of Na+,K+-ATPase by ouabain opens calcium channels coupled to acetylcholine release in guinea pig myenteric plexus. Gomez RS; Gomez MV; Prado MA J Neurochem; 1996 Apr; 66(4):1440-7. PubMed ID: 8627296 [TBL] [Abstract][Full Text] [Related]
6. Brain voltage-sensitive calcium channel subtypes differentiated by omega-conotoxin fraction GVIA. Reynolds IJ; Wagner JA; Snyder SH; Thayer SA; Olivera BM; Miller RJ Proc Natl Acad Sci U S A; 1986 Nov; 83(22):8804-7. PubMed ID: 2430302 [TBL] [Abstract][Full Text] [Related]
7. Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. Cohen MW; Jones OT; Angelides KJ J Neurosci; 1991 Apr; 11(4):1032-9. PubMed ID: 1707093 [TBL] [Abstract][Full Text] [Related]
8. Omega-conotoxin binding and effects on calcium channel function in human neuroblastoma and rat pheochromocytoma cell lines. Sher E; Pandiella A; Clementi F FEBS Lett; 1988 Aug; 235(1-2):178-82. PubMed ID: 2456948 [TBL] [Abstract][Full Text] [Related]
9. A review on conotoxins targeting ion channels and acetylcholine receptors of the vertebrate neuromuscular junction. Favreau P; Le Gall F; Benoit E; Molgó J Acta Physiol Pharmacol Ther Latinoam; 1999; 49(4):257-67. PubMed ID: 10797869 [TBL] [Abstract][Full Text] [Related]
10. Calcium channels involved in synaptic transmission at the mature and regenerating mouse neuromuscular junction. Katz E; Ferro PA; Weisz G; Uchitel OD J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):687-97. PubMed ID: 9003554 [TBL] [Abstract][Full Text] [Related]
11. Potassium channel blocking actions of beta-bungarotoxin and related toxins on mouse and frog motor nerve terminals. Rowan EG; Harvey AL Br J Pharmacol; 1988 Jul; 94(3):839-47. PubMed ID: 3263160 [TBL] [Abstract][Full Text] [Related]
12. Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu-conotoxin and reduced external sodium. Braga MF; Anderson AJ; Harvey AL; Rowan EG Br J Pharmacol; 1992 May; 106(1):91-4. PubMed ID: 1324070 [TBL] [Abstract][Full Text] [Related]
13. Effects of omega-conotoxin GVIA on autonomic neuroeffector transmission in various tissues. De Luca A; Li CG; Rand MJ; Reid JJ; Thaina P; Wong-Dusting HK Br J Pharmacol; 1990 Oct; 101(2):437-47. PubMed ID: 2175236 [TBL] [Abstract][Full Text] [Related]
14. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. McCleskey EW; Fox AP; Feldman DH; Cruz LJ; Olivera BM; Tsien RW; Yoshikami D Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4327-31. PubMed ID: 2438698 [TBL] [Abstract][Full Text] [Related]
15. Effects of omega-agatoxin-IVA and omega-conotoxin-MVIIC on perineurial Ca++ and Ca(++)-activated K+ currents of mouse motor nerve terminals. Xu YF; Atchison WD J Pharmacol Exp Ther; 1996 Dec; 279(3):1229-36. PubMed ID: 8968345 [TBL] [Abstract][Full Text] [Related]
16. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission. Wright CE; Angus JA Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356 [TBL] [Abstract][Full Text] [Related]
17. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Uchitel OD; Protti DA; Sanchez V; Cherksey BD; Sugimori M; Llinás R Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3330-3. PubMed ID: 1348859 [TBL] [Abstract][Full Text] [Related]
18. Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes. Obaid AL; Flores R; Salzberg BM J Gen Physiol; 1989 Apr; 93(4):715-29. PubMed ID: 2471780 [TBL] [Abstract][Full Text] [Related]
19. Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. Villarroya M; De la Fuente MT; López MG; Gandía L; García AG Eur J Pharmacol; 1997 Feb; 320(2-3):249-57. PubMed ID: 9059861 [TBL] [Abstract][Full Text] [Related]