These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2447536)

  • 41. Synthetic omega-conotoxin blocks synaptic transmission in the hippocampus in vitro.
    Kamiya H; Sawada S; Yamamoto C
    Neurosci Lett; 1988 Aug; 91(1):84-8. PubMed ID: 2845309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms.
    Adams ME; Myers RA; Imperial JS; Olivera BM
    Biochemistry; 1993 Nov; 32(47):12566-70. PubMed ID: 8251474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence of omega-conotoxin GV1A-sensitive Ca2+ channels in mammalian peripheral nerve terminals.
    Lundy PM; Frew R
    Eur J Pharmacol; 1988 Nov; 156(3):325-30. PubMed ID: 2850931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Presynaptic localization of omega-conotoxin-sensitive calcium channels at the frog neuromuscular junction.
    Torri Tarelli F; Passafaro M; Clementi F; Sher E
    Brain Res; 1991 May; 547(2):331-4. PubMed ID: 1884210
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.
    Owen PJ; Marriott DB; Boarder MR
    Br J Pharmacol; 1989 May; 97(1):133-8. PubMed ID: 2470457
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of an omega-conotoxin-sensitive calcium channel in Xenopus oocytes injected with mRNA from Torpedo electric lobe.
    Umbach JA; Gundersen CB
    Proc Natl Acad Sci U S A; 1987 Aug; 84(15):5464-8. PubMed ID: 2440049
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum.
    Dobrev D; Milde AS; Andreas K; Ravens U
    Br J Pharmacol; 1999 May; 127(2):576-82. PubMed ID: 10385261
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modification of ionic currents underlying action potentials in mouse nerve terminals by the thiol-oxidizing agent diamide.
    Braga MF; Rowan EG; Harvey AL
    Neuropharmacology; 1995 Nov; 34(11):1529-33. PubMed ID: 8606799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM; Lodge D
    Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition by omega-conotoxin GVIA of adrenal catecholamine release in response to endogenous and exogenous acetylcholine.
    Kimura T; Takeuchi A; Satoh S
    Eur J Pharmacol; 1994 Oct; 264(2):169-75. PubMed ID: 7851479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of synthetic omega-conotoxin, a new type Ca2+ antagonist, on frog and mouse neuromuscular transmission.
    Sano K; Enomoto K; Maeno T
    Eur J Pharmacol; 1987 Sep; 141(2):235-41. PubMed ID: 2824217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. omega-Conotoxins block neurotransmission in the rat vas deferens by binding to different presynaptic sites on the N-type Ca2+ channel.
    Hirata H; Albillos A; Fernández F; Medrano J; Jurkiewicz A; García AG
    Eur J Pharmacol; 1997 Feb; 321(2):217-23. PubMed ID: 9063691
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the omega-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types.
    Cruz LJ; Johnson DS; Olivera BM
    Biochemistry; 1987 Feb; 26(3):820-4. PubMed ID: 2436655
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of synthetic omega-conotoxin on synaptic transmission.
    Koyano K; Abe T; Nishiuchi Y; Sakakibara S
    Eur J Pharmacol; 1987 Mar; 135(3):337-43. PubMed ID: 3034633
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of mu-conotoxin GIIIA for the study of synaptic transmission at the frog neuromuscular junction.
    Sosa MA; Zengel JE
    Neurosci Lett; 1993 Jul; 157(2):235-8. PubMed ID: 8233060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential blockade of rat alpha3beta4 and alpha7 neuronal nicotinic receptors by omega-conotoxin MVIIC, omega-conotoxin GVIA and diltiazem.
    Herrero CJ; García-Palomero E; Pintado AJ; García AG; Montiel C
    Br J Pharmacol; 1999 Jul; 127(6):1375-87. PubMed ID: 10455287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Different effects of toosendanin on perineurially recorded Ca(2+) currents in mouse and frog motor nerve terminals.
    Ding J; Xu TH; Shi YL
    Neurosci Res; 2001 Nov; 41(3):243-9. PubMed ID: 11672837
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction.
    Katz E; Ferro PA; Cherksey BD; Sugimori M; Llinás R; Uchitel OD
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):695-706. PubMed ID: 7473230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release.
    Turner TJ; Adams ME; Dunlap K
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9518-22. PubMed ID: 8415733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of charybdotoxin, a blocker of Ca2+-activated K+ channels, on motor nerve terminals.
    Anderson AJ; Harvey AL; Rowan EG; Strong PN
    Br J Pharmacol; 1988 Dec; 95(4):1329-35. PubMed ID: 2464391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.