BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24475748)

  • 1. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability.
    Alvarez S; Roy Choudhury S; Pandey S
    J Proteome Res; 2014 Mar; 13(3):1688-701. PubMed ID: 24475748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum).
    Liu H; Sultan MA; Liu XL; Zhang J; Yu F; Zhao HX
    PLoS One; 2015; 10(4):e0121852. PubMed ID: 25859656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root Proteomics Reveals the Effects of Wood Vinegar on Wheat Growth and Subsequent Tolerance to Drought Stress.
    Wang Y; Qiu L; Song Q; Wang S; Wang Y; Ge Y
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30795585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses.
    Saad AS; Li X; Li HP; Huang T; Gao CS; Guo MW; Cheng W; Zhao GY; Liao YC
    Plant Sci; 2013 Apr; 203-204():33-40. PubMed ID: 23415326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.
    Ma D; Ding H; Wang C; Qin H; Han Q; Hou J; Lu H; Xie Y; Guo T
    PLoS One; 2016; 11(9):e0163082. PubMed ID: 27649534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals.
    Ji X; Dong B; Shiran B; Talbot MJ; Edlington JE; Hughes T; White RG; Gubler F; Dolferus R
    Plant Physiol; 2011 Jun; 156(2):647-62. PubMed ID: 21502188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.
    Kobayashi F; Maeta E; Terashima A; Takumi S
    Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat.
    Kang G; Li G; Xu W; Peng X; Han Q; Zhu Y; Guo T
    J Proteome Res; 2012 Dec; 11(12):6066-79. PubMed ID: 23101459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shotgun proteomic analysis of long-distance drought signaling in rice roots.
    Mirzaei M; Soltani N; Sarhadi E; Pascovici D; Keighley T; Salekdeh GH; Haynes PA; Atwell BJ
    J Proteome Res; 2012 Jan; 11(1):348-58. PubMed ID: 22047206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance.
    Faghani E; Gharechahi J; Komatsu S; Mirzaei M; Khavarinejad RA; Najafi F; Farsad LK; Salekdeh GH
    J Proteomics; 2015 Jan; 114():1-15. PubMed ID: 25449836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco.
    Hu W; Huang C; Deng X; Zhou S; Chen L; Li Y; Wang C; Ma Z; Yuan Q; Wang Y; Cai R; Liang X; Yang G; He G
    Plant Cell Environ; 2013 Aug; 36(8):1449-64. PubMed ID: 23356734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.
    Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V
    J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress.
    Kang G; Li G; Wang L; Wei L; Yang Y; Wang P; Yang Y; Wang Y; Feng W; Wang C; Guo T
    J Proteome Res; 2015 Jan; 14(1):249-67. PubMed ID: 25330896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms.
    Krugman T; Peleg Z; Quansah L; Chagué V; Korol AB; Nevo E; Saranga Y; Fait A; Chalhoub B; Fahima T
    Funct Integr Genomics; 2011 Dec; 11(4):565-83. PubMed ID: 21656015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery.
    Hao P; Zhu J; Gu A; Lv D; Ge P; Chen G; Li X; Yan Y
    Proteomics; 2015 May; 15(9):1544-63. PubMed ID: 25546360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration.
    Cheng L; Wang Y; He Q; Li H; Zhang X; Zhang F
    BMC Plant Biol; 2016 Aug; 16(1):188. PubMed ID: 27576435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem.
    Zhao K; Shen X; Yuan H; Liu Y; Liao X; Wang Q; Liu L; Li F; Li T
    Plant Cell Physiol; 2013 Sep; 54(9):1415-30. PubMed ID: 23757363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.
    Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG
    Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.
    Mohammadi PP; Moieni A; Komatsu S
    Amino Acids; 2012 Nov; 43(5):2137-52. PubMed ID: 22543724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.