These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 24475905)

  • 21. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries.
    Shaju KM; Jiao F; Débart A; Bruce PG
    Phys Chem Chem Phys; 2007 Apr; 9(15):1837-42. PubMed ID: 17415496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage.
    Chen J; Yang L; Rousidan S; Fang S; Zhang Z; Hirano S
    Nanoscale; 2013 Nov; 5(21):10623-8. PubMed ID: 24057146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries.
    Liu B; Zhang J; Wang X; Chen G; Chen D; Zhou C; Shen G
    Nano Lett; 2012 Jun; 12(6):3005-11. PubMed ID: 22607457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-wrapped MnO2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries.
    Li L; Raji AR; Tour JM
    Adv Mater; 2013 Nov; 25(43):6298-302. PubMed ID: 23996876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices.
    Hu P; Yan M; Wang X; Han C; He L; Wei X; Niu C; Zhao K; Tian X; Wei Q; Li Z; Mai L
    Nano Lett; 2016 Mar; 16(3):1523-9. PubMed ID: 26882441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of modified graphene for energy storage applications.
    Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High Pseudocapacitive Performance of MnO2 Nanowires on Recyclable Electrodes.
    Han ZJ; Bo Z; Seo DH; Pineda S; Wang Y; Yang HY; Ostrikov KK
    ChemSusChem; 2016 May; 9(9):1020-6. PubMed ID: 27059434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polypyrrole-encapsulated vanadium pentoxide nanowires on a conductive substrate for electrode in aqueous rechargeable lithium battery.
    Liang C; Fang D; Cao Y; Li G; Luo Z; Zhou Q; Xiong C; Xu W
    J Colloid Interface Sci; 2015 Feb; 439():69-75. PubMed ID: 25463177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.
    Yang Y; Ren JG; Wang X; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Sep; 5(18):8689-94. PubMed ID: 23900559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controllable synthesis of hollow bipyramid β-MnO(2) and its high electrochemical performance for lithium storage.
    Chen WM; Qie L; Shao QG; Yuan LX; Zhang WX; Huang YH
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3047-53. PubMed ID: 22658801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosting properties of 3D binder-free manganese oxide anodes by preformation of a solid electrolyte interphase.
    Zhou H; Wang X; Sheridan E; Chen D
    ChemSusChem; 2015 Apr; 8(8):1368-80. PubMed ID: 25760685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Deng Z; Zeng JY; Liu J; Wang C; Hasan T; Su BL
    Sci Rep; 2015 Oct; 5():14686. PubMed ID: 26439102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved electrochemical performance of LiCoPO4 nanoparticles for lithium ion batteries.
    Gu HB; Jin B; Jun DK; Han Z
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4037-40. PubMed ID: 18047113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusion-controlled evolution of core-shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries.
    Jiang J; Luo J; Zhu J; Huang X; Liu J; Yu T
    Nanoscale; 2013 Sep; 5(17):8105-13. PubMed ID: 23884214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CoMn(2)O(4) spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries.
    Hu L; Zhong H; Zheng X; Huang Y; Zhang P; Chen Q
    Sci Rep; 2012; 2():986. PubMed ID: 23248749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single nanorod devices for battery diagnostics: a case study on LiMn2O4.
    Yang Y; Xie C; Ruffo R; Peng H; Kim DK; Cui Y
    Nano Lett; 2009 Dec; 9(12):4109-14. PubMed ID: 19807129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability.
    Zhu J; Zhu T; Zhou X; Zhang Y; Lou XW; Chen X; Zhang H; Hng HH; Yan Q
    Nanoscale; 2011 Mar; 3(3):1084-9. PubMed ID: 21180729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Red Mud and Li-Ion Batteries: A Magnetic Connection.
    Suryawanshi A; Aravindan V; Madhavi S; Ogale S
    ChemSusChem; 2016 Aug; 9(16):2193-200. PubMed ID: 27403736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.