These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2447596)

  • 1. Metabolism of the diaminoantifolates: biosynthesis and pharmacology of the 7-hydroxyl and polyglutamyl metabolites of methotrexate and related antifolates.
    Matherly LH; Seither RL; Goldman ID
    Pharmacol Ther; 1987; 35(1-2):27-56. PubMed ID: 2447596
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydroxylation of 4-amino-antifolates by partially purified aldehyde oxidase from rabbit liver.
    Fabre G; Seither R; Goldman ID
    Biochem Pharmacol; 1986 Apr; 35(8):1325-30. PubMed ID: 2421732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity, uptake, polyglutamate formation, and antileukemic effects of 8-deaza analogues of methotrexate and aminopterin in mice.
    Kuehl M; Brixner DI; Broom AD; Avery TL; Blakley RL
    Cancer Res; 1988 Mar; 48(6):1481-8. PubMed ID: 2449950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of sensitivity and natural resistance to antifolates in a methylcholanthrene-induced rat sarcoma.
    Li WW; Lin JT; Schweitzer BI; Bertino JR
    Mol Pharmacol; 1991 Nov; 40(5):854-8. PubMed ID: 1719370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of the 7-hydroxy metabolites of methotrexate and 10-ethyl-10-deazaaminopterin.
    Dawson MI; O'Krongly D; Hobbs PD; Barrueco JR; Sirotnak FM
    J Pharm Sci; 1987 Aug; 76(8):635-8. PubMed ID: 11002823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of natural resistance to antifolates in human soft tissue sarcomas.
    Li WW; Lin JT; Tong WP; Trippett TM; Brennan MF; Bertino JR
    Cancer Res; 1992 Mar; 52(6):1434-8. PubMed ID: 1371715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifolates in rheumatoid arthritis: a hypothetical mechanism of action.
    Baggott JE; Morgan SL; Ha TS; Alarcón GS; Koopman WJ; Krumdieck CL
    Clin Exp Rheumatol; 1993; 11 Suppl 8():S101-5. PubMed ID: 8324932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced polyglutamylation of aminopterin relative to methotrexate in the Ehrlich ascites tumor cell in vitro.
    Matherly LH; Voss MK; Anderson LA; Fry DW; Goldman ID
    Cancer Res; 1985 Mar; 45(3):1073-8. PubMed ID: 2578870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive dihydrofolate reductase binding assay of triazinate (NSC-139105), methasquin (NSC-122870), and aminopterin (NSC739).
    Myers CE; Eliot HM; Chabner BA
    Cancer Treat Rep; 1976 May; 60(5):615-6. PubMed ID: 1033031
    [No Abstract]   [Full Text] [Related]  

  • 10. Uptake of methotrexate, aminopterin, and methasquin and inhibition of dihydrofolate reductase and of DNA synthesis in mouse small intestine.
    Philips FS; Sirotnak FM; Sodergren JE; Hutchison DJ
    Cancer Res; 1973 Jan; 33(1):153-8. PubMed ID: 4682318
    [No Abstract]   [Full Text] [Related]  

  • 11. Characteristics of the formation and membrane transport of 7-hydroxymethotrexate in freshly isolated rabbit hepatocytes.
    Fabre G; Fabre I; Gewirtz DA; Goldman ID
    Cancer Res; 1985 Mar; 45(3):1086-91. PubMed ID: 2578871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of the disparate antitumor activities of (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolate and methotrexate toward human lymphoblastic leukemia cells, characterized by severely impaired antifolate membrane transport.
    Matherly LH; Angeles SM; McGuire JJ
    Biochem Pharmacol; 1993 Dec; 46(12):2185-95. PubMed ID: 7506026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies on the transport of aminopterin, methotrexate, and methasquin by the L1210 leukemia cell.
    Sirotnak FM; Donsbach RC
    Cancer Res; 1972 Oct; 32(10):2120-6. PubMed ID: 4404161
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism-based approaches to inhibition of the synthesis and degradation of folate and antifolate polyglutamates.
    Kalman TI
    Adv Exp Med Biol; 1993; 338():639-43. PubMed ID: 7508172
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolism of folate antagonists.
    Johns DG; Valerino DM
    Ann N Y Acad Sci; 1971 Nov; 186():378-86. PubMed ID: 5289427
    [No Abstract]   [Full Text] [Related]  

  • 16. Calculation of relative binding free energy difference of DHFR inhibitors by a finite difference thermodynamic integration (FDTI) approach.
    Kamath S; Coutinho E; Desai P
    J Biomol Struct Dyn; 1999 Jun; 16(6):1239-44. PubMed ID: 10447207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Number of binding sites and possible mechanisms of action.
    Condit PT
    Ann N Y Acad Sci; 1971 Nov; 186():363-4. PubMed ID: 4943807
    [No Abstract]   [Full Text] [Related]  

  • 18. Uptake and metabolism of 5,8-dideazaisofolic acid in human colon carcinoma cells.
    Sobrero AF; McGuire JJ; Bertino JR
    Biochem Pharmacol; 1988 Mar; 37(6):997-1001. PubMed ID: 2451526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable pharmacodynamics of antifolates in squamous cell carcinoma of the head and neck.
    Braakhuis BJ; Jansen G; Peters GJ
    Adv Exp Med Biol; 1993; 338():671-4. PubMed ID: 8304205
    [No Abstract]   [Full Text] [Related]  

  • 20. Membrane transport of antifolates as a critical determinant of drug cytotoxicity.
    Goldman ID
    Adv Exp Med Biol; 1977; 84():85-113. PubMed ID: 331908
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.