These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 24476093)
1. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. Bao M; Lou X; Zhou Q; Dong W; Yuan H; Zhang Y ACS Appl Mater Interfaces; 2014 Feb; 6(4):2611-21. PubMed ID: 24476093 [TBL] [Abstract][Full Text] [Related]
2. HAp incorporated ultrafine polymeric fibers with shape memory effect for potential use in bone screw hole healing. Bao M; Wang X; Yuan H; Lou X; Zhao Q; Zhang Y J Mater Chem B; 2016 Aug; 4(31):5308-5320. PubMed ID: 32263611 [TBL] [Abstract][Full Text] [Related]
3. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Kai D; Prabhakaran MP; Chan BQ; Liow SS; Ramakrishna S; Xu F; Loh XJ Biomed Mater; 2016 Feb; 11(1):015007. PubMed ID: 26836757 [TBL] [Abstract][Full Text] [Related]
4. Shape Memory and Osteogenesis Capabilities of the Electrospun Poly(3-Hydroxybutyrate- Wang X; Yan H; Shen Y; Tang H; Yi B; Qin C; Zhang Y Tissue Eng Part A; 2021 Jan; 27(1-2):142-152. PubMed ID: 32524903 [TBL] [Abstract][Full Text] [Related]
5. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
6. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Nguyen TH; Bao TQ; Park I; Lee BT J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833 [TBL] [Abstract][Full Text] [Related]
8. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [TBL] [Abstract][Full Text] [Related]
9. Scaffolds with shape memory behavior for the treatment of large bone defects. Rychter P; Pamula E; Orchel A; Posadowska U; Krok-Borkowicz M; Kaps A; Smigiel-Gac N; Smola A; Kasperczyk J; Prochwicz W; Dobrzynski P J Biomed Mater Res A; 2015 Nov; 103(11):3503-15. PubMed ID: 25973734 [TBL] [Abstract][Full Text] [Related]
10. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
11. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. Allo BA; Lin S; Mequanint K; Rizkalla AS ACS Appl Mater Interfaces; 2013 Aug; 5(15):7574-83. PubMed ID: 23826710 [TBL] [Abstract][Full Text] [Related]
12. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438 [TBL] [Abstract][Full Text] [Related]
13. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells. Sun Y; Xing Z; Xue Y; Mustafa K; Finne-Wistrand A; Albertsson AC Biomacromolecules; 2014 Apr; 15(4):1259-68. PubMed ID: 24559372 [TBL] [Abstract][Full Text] [Related]
14. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233 [TBL] [Abstract][Full Text] [Related]
15. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
16. Development of biomimetic trilayer fibrous membranes for guided bone regeneration. Sun F; Chen J; Jin S; Wang J; Man Y; Li J; Zou Q; Li Y; Zuo Y J Mater Chem B; 2019 Jan; 7(4):665-675. PubMed ID: 32254799 [TBL] [Abstract][Full Text] [Related]