BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 24476105)

  • 1. Larval body patterning and apical organs are conserved in animal evolution.
    Marlow H; Tosches MA; Tomer R; Steinmetz PR; Lauri A; Larsson T; Arendt D
    BMC Biol; 2014 Jan; 12():7. PubMed ID: 24476105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.
    Range RC; Wei Z
    Development; 2016 May; 143(9):1523-33. PubMed ID: 26952978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system.
    Santagata S; Resh C; Hejnol A; Martindale MQ; Passamaneck YJ
    Evodevo; 2012 Jan; 3():3. PubMed ID: 22273002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the wnt gene complement in a spiral-cleaving embryo and trochophore larva.
    Pruitt MM; Letcher EJ; Chou HC; Bastin BR; Schneider SQ
    Int J Dev Biol; 2014; 58(6-8):563-73. PubMed ID: 25690970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From spiral cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain.
    Vopalensky P; Tosches MA; Achim K; Handberg-Thorsager M; Arendt D
    BMC Biol; 2019 Oct; 17(1):81. PubMed ID: 31640768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anterior medial cell population with an apical-organ-like transcriptional profile that pioneers the central nervous system in the centipede Strigamia maritima.
    Hunnekuhl VS; Akam M
    Dev Biol; 2014 Dec; 396(1):136-49. PubMed ID: 25263198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancient animal microRNAs and the evolution of tissue identity.
    Christodoulou F; Raible F; Tomer R; Simakov O; Trachana K; Klaus S; Snyman H; Hannon GJ; Bork P; Arendt D
    Nature; 2010 Feb; 463(7284):1084-8. PubMed ID: 20118916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Wei Z; Shiba K; Angerer LM; Inaba K
    Dev Biol; 2010 Dec; 348(1):67-75. PubMed ID: 20875818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a systems-level understanding of development in the marine annelid Platynereis dumerilii.
    Williams EA; Jékely G
    Curr Opin Genet Dev; 2016 Aug; 39():175-181. PubMed ID: 27501412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, phylogeny, and expression of the frizzled-related gene family in the lophotrochozoan annelid Platynereis dumerilii.
    Bastin BR; Chou HC; Pruitt MM; Schneider SQ
    Evodevo; 2015; 6():37. PubMed ID: 26640641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8.
    Leclère L; Bause M; Sinigaglia C; Steger J; Rentzsch F
    Development; 2016 May; 143(10):1766-77. PubMed ID: 26989171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glypican1/2/4/6 and sulfated glycosaminoglycans regulate the patterning of the primary body axis in the cnidarian Nematostella vectensis.
    Bause M; van der Horst R; Rentzsch F
    Dev Biol; 2016 Jun; 414(1):108-20. PubMed ID: 27090806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved function for Strabismus in establishing planar cell polarity in the ciliated ectoderm during cnidarian larval development.
    Momose T; Kraus Y; Houliston E
    Development; 2012 Dec; 139(23):4374-82. PubMed ID: 23095884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and cellular architecture of the larval sensory organ in the cnidarian Nematostella vectensis.
    Gilbert E; Teeling C; Lebedeva T; Pedersen S; Chrismas N; Genikhovich G; Modepalli V
    Development; 2022 Aug; 149(16):. PubMed ID: 36000354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa).
    Kulakova M; Bakalenko N; Novikova E; Cook CE; Eliseeva E; Steinmetz PR; Kostyuchenko RP; Dondua A; Arendt D; Akam M; Andreeva T
    Dev Genes Evol; 2007 Jan; 217(1):39-54. PubMed ID: 17180685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian.
    Sinigaglia C; Busengdal H; Leclère L; Technau U; Rentzsch F
    PLoS Biol; 2013; 11(2):e1001488. PubMed ID: 23483856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The expression of a hunchback ortholog in the polychaete annelid Platynereis dumerilii suggests an ancestral role in mesoderm development and neurogenesis.
    Kerner P; Zelada González F; Le Gouar M; Ledent V; Arendt D; Vervoort M
    Dev Genes Evol; 2006 Dec; 216(12):821-8. PubMed ID: 16983541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Owenia fusiformis - a basally branching annelid suitable for studying ancestral features of annelid neural development.
    Helm C; Vöcking O; Kourtesis I; Hausen H
    BMC Evol Biol; 2016 Jun; 16(1):129. PubMed ID: 27306767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis.
    Marlow H; Matus DQ; Martindale MQ
    Dev Biol; 2013 Aug; 380(2):324-34. PubMed ID: 23722001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Six3 demarcates the anterior-most developing brain region in bilaterian animals.
    Steinmetz PR; Urbach R; Posnien N; Eriksson J; Kostyuchenko RP; Brena C; Guy K; Akam M; Bucher G; Arendt D
    Evodevo; 2010 Dec; 1(1):14. PubMed ID: 21190549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.